Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis due to late detection and resistance to conventional therapies. Published studies show that the PDA tumor microenvironment (TME) is predominantly infiltrated with immune suppressive cells and signals that if altered, would allow effective immunotherapy. However, single-agent checkpoint inhibitors including agents that alter immune suppressive signals in other human cancers such as cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death 1 (PD-1) and its ligand PD-L1, have failed to demonstrate objective responses when given as single agents to PDA patients. We recently reported that inhibition of the CTLA-4 pathway when given together with a T cell inducing vaccine gives objective responses in metastatic PDA patients. In this study, we evaluated blockade of the PD-1/PD-L1 pathway. We found that PD-L1 is weakly expressed at a low frequency in untreated human and murine PDAs but treatment with a GM-CSF secreting PDA vaccine (GVAX) significantly upregulates PD-L1 membranous expression after treatment of tumor bearing mice. In addition, combination therapy with vaccine and PD-1 antibody blockade improved murine survival compared to PD-1 antibody monotherapy or GVAX therapy alone. Furthermore, PD-1 blockade increased effector CD8+ T lymphocytes and tumor-specific interferon-γ production of CD8+ T cells in the TME. Immunosuppressive pathways, including regulatory T cells (Tregs) and CTLA-4 expression on T cells were overcome by the addition of vaccine and low dose cyclophosphamide to PD-1 blockade. Collectively, our study supports combining PD-1 or PD-L1 antibody therapy with a T cell inducing agent for PDA treatment.
Background Precise methods for postoperative risk stratification to guide the administration of adjuvant chemotherapy (ACT) in localized colorectal cancer (CRC) are still lacking. Here, we conducted a prospective, observational, and multicenter study to investigate the utility of circulating tumor DNA (ctDNA) in predicting the recurrence risk. Methods From September 2017 to March 2020, 276 patients with stage II/III CRC were prospectively recruited in this study and 240 evaluable patients were retained for analysis, of which 1290 serial plasma samples were collected. Somatic variants in both the primary tumor and plasma were detected via a targeted sequencing panel of 425 cancer-related genes. Patients were treated and followed up per standard of care. Results Preoperatively, ctDNA was detectable in 154 of 240 patients (64.2%). At day 3–7 postoperation, ctDNA positivity was associated with remarkably high recurrence risk (hazard ratio [HR], 10.98; 95%CI, 5.31–22.72; P < 0.001). ctDNA clearance and recurrence-free status was achieved in 5 out of 17 ctDNA-positive patients who were subjected to ACT. Likewise, at the first sampling point after ACT, ctDNA-positive patients were 12 times more likely to experience recurrence (HR, 12.76; 95%CI, 5.39–30.19; P < 0.001). During surveillance after definitive therapy, ctDNA positivity was also associated with extremely high recurrence risk (HR, 32.02; 95%CI, 10.79–95.08; P < 0.001). In all multivariate analyses, ctDNA positivity remained the most significant and independent predictor of recurrence-free survival after adjusting for known clinicopathological risk factors. Serial ctDNA analyses identified recurrence with an overall accuracy of 92.0% and could detect disease recurrence ahead of radiological imaging with a mean lead time of 5.01 months. Conclusions Postoperative serial ctDNA detection predicted high relapse risk and identified disease recurrence ahead of radiological imaging in patients with stage II/III CRC. ctDNA may be used to guide the decision-making in postsurgical management.
Existing nanoparticle-mediated drug delivery systems for glioma systemic chemotherapy remain a great challenge due to poor delivery efficiency resulting from the blood brain barrier/blood-(brain tumor) barrier (BBB/BBTB) and insufficient tumor penetration. Here, we demonstrate a distinct design by patching doxorubicin-loaded heparin-based nanoparticles (DNs) onto the surface of natural grapefruit extracellular vesicles (EVs), to fabricate biomimetic EV-DNs, achieving efficient drug delivery and thus significantly enhancing antiglioma efficacy. The patching strategy allows the unprecedented 4-fold drug loading capacity compared to traditional encapsulation for EVs. The biomimetic EV-DNs are enabled to bypass BBB/BBTB and penetrate into glioma tissues by receptor-mediated transcytosis and membrane fusion, greatly promoting cellular internalization and antiproliferation ability as well as extending circulation time. We demonstrate that a high-abundance accumulation of EV-DNs can be detected at glioma tissues, enabling the maximal brain tumor uptake of EV-DNs and great antiglioma efficacy in vivo.
Most patients with pancreatic ductal adenocarcinoma (PDA) present with metastatic disease at the time of diagnosis or will recur with metastases after surgical treatment. Semaphorin–plexin signaling mediates the migration of neuronal axons during development and of blood vessels during angiogenesis. The expression of the gene encoding semaphorin 3D (Sema3D) is increased in PDA tumors, and the presence of antibodies against the pleiotropic protein annexin A2 (AnxA2) in the sera of some patients after surgical resection of PDA is associated with longer recurrence-free survival. By knocking out AnxA2 in a transgenic mouse model of PDA (KPC) that recapitulates the progression of human PDA from premalignancy to metastatic disease, we found that AnxA2 promoted metastases in vivo. The expression of AnxA2 promoted the secretion of Sema3D from PDA cells, which coimmunoprecipitated with the co-receptor plexin D1 (PlxnD1) on PDA cells. Mouse PDA cells in which SEMA3D was knocked down or ANXA2-null PDA cells exhibited decreased invasive and metastatic potential in culture and in mice. However, restoring Sema3D in AnxA2-null cells did not entirely rescue metastatic behavior in culture and in vivo, suggesting that AnxA2 mediates additional prometastatic mechanisms. Patients with primary PDA tumors that have abundant Sema3D have widely metastatic disease and decreased survival compared to patients with tumors that have relatively low Sema3D abundance. Thus, AnxA2 and Sema3D may be new therapeutic targets and prognostic markers of metastatic PDA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.