When the Electrorheological elastomer (ERE) is embedded into intelligence structure system, the structure damping and stiffness of the system can be changed quickly and reversibly under an external electric field. Thus, the application of the Electrorheological elastomer in the active and passive hybrid control of structural vibration has already attracted people's wide attention. In this paper, three types of ER elastomer were prepared based on barium titanate, starch, then the microstructure of ER elastomer was observed and the mechanical properties were analyzed; a shear mode ERE shock absorber was designed, the vibration response performance of which was experimentally evaluated under various excitation frequency with or without the applied field. The experimental results showed that the damping and stiffness of the shock absorber could be modified with a changing external electric field, whose macro-features was that the damping coefficient increased with the increase of the electric field, and the damping effect in the high frequency was better than in the low frequency.
Since the fast response of the internal structure of the Electrorheological (ER) suspension fluids occurs in the controlled space (electrode distance is generally 1-2 mm) of the applied electric field, where the main feature of the ER suspension fluids in the certain time and spatial scales is low shear rate but high flow resistance, which means the Mach number and the Reynolds number are generally small, it can be researched as micro-scale flow. According to this characteristic, the author proposed a discrete-particle-motion model of the ER suspension flows based on the Lattice Boltzmann method(LBM) of the Mesoscopic kinetic theory. The results of the dynamic simulation showed that the model solved the problem of describing the changes of the rheological properties of some local flow fields and the influences on the particle movement during the two-way coupling in this flow field.
Based on the multi-field coupling effect and the theory of electrodynamics, as well as the capture effect of the ER fluids flowing through the control field, by analyzing on the flow characteristics under the electric - power - thermal coupling load environment, the structure-force dynamic coupling mathematical model of ER fluids is derived under multi-field.
In recent years, with the development of smart materials as well as smart structure technologies, and the research on piezoelectric energy harvesting technology deepens, the low power application circuit along with highly-efficient storage circuit optimization and design has become one of the essential parts in this field. The author made a systematic conclusion on the piezoelectric energy harvesting circuit, and put forwards a feasible plan for sustainable research in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.