This ability to learn consecutive tasks without forgetting how to perform previously trained problems is essential for developing an online dialogue system. This paper proposes an effective continual learning for the task-oriented dialogue system with iterative network pruning, expanding and masking (TPEM), which preserves performance on previously encountered tasks while accelerating learning progress on subsequent tasks. Specifically, TPEM (i) leverages network pruning to keep the knowledge for old tasks, (ii) adopts network expanding to create free weights for new tasks, and (iii) introduces task-specific network masking to alleviate the negative impact of fixed weights of old tasks on new tasks. We conduct extensive experiments on seven different tasks from three benchmark datasets and show empirically that TPEM leads to significantly improved results over the strong competitors. For reproducibility, we submit the code and data at: https://github.com/siat-nlp/TPEM. * This work was conducted when Binzong Geng was an intern at SIAT, Chinese Academy of Sciences.
Handling emotions in human‐computer dialogues has emerged as a challenging task which requires artificial intelligence systems to generate emotional responses by jointly perceiving the emotion involved in the input posts and incorporating it into the generation of semantically coherent and emotionally reasonable responses. However, most previous works generate emotional responses solely from input posts, which do not take full advantage of the training corpus and suffer from generating generic responses. In this study, we introduce a hierarchical semantic‐emotional memory module for emotional conversation generation (called HSEMEC), which can learn abstract semantic conversation patterns and emotional information from the large training corpus. The learnt semantic and emotional knowledge helps to enrich the post representation and assist the emotional conversation generation. Comprehensive experiments on a large real‐world conversation corpus show that HSEMEC can outperform the strong baselines on both automatic and manual evaluation. For reproducibility, we release the code and data publicly at: https://github.com/siat‐nlp/HSEMEC‐code‐data.
In real-world scenarios, it is crucial to build a lifelong taskoriented dialogue system (TDS) that continually adapts to new knowledge without forgetting previously acquired experiences. Existing approaches mainly focus on mitigating the catastrophic forgetting in lifelong TDS. However, the transfer ability to generalize the accumulated old knowledge to new tasks is underexplored. In this paper, we propose a two-stage lifelong task-oriented dialogue generation method to mitigate catastrophic forgetting and encourage knowledge transfer simultaneously, inspired by the learning process. In the first stage, we learn task-specific masks which adaptively preserve the knowledge of each visited task so as to mitigate catastrophic forgetting. In this stage, we are expected to learn the task-specific knowledge which is tailored for each task. In the second stage, we bring the knowledge from the encountered tasks together and understand thoroughly. To this end, we devise a balanced meta learning strategy for both forward and backward knowledge transfer in the lifelong learning process. In particular, we perform meta-update with a meta-test set sampled from the current training data for forward knowledge transfer. In addition, we employ an uncertainty-based sampling strategy to select and store representative dialogue samples into episodic memory and perform meta-update with a meta-test set sampled from the memory for backward knowledge transfer. With extensive experiments on 29 tasks, we show that MetaLTDS outperforms the strong baselines in terms of both effectiveness and efficiency. For reproducibility, we submit our code at: https: //github.com/travis-xu/MetaLTDS.
The ability to continually learn over time by grasping new knowledge and remembering previously learned experiences is essential for developing an online task-oriented dialogue system (TDS). In this paper, we work on the class incremental learning scenario where the TDS is evaluated without specifying the dialogue domain. We employ contrastive distillation on the intermediate representations of dialogues to learn transferable representations that suffer less from catastrophic forgetting. Besides, we provide a dynamic update mechanism to explicitly preserve the learned experiences by only updating the parameters related to the new task while keeping other parameters fixed. Extensive experiments demonstrate that our method significantly outperforms the strong baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.