Abstract:The recently explored Xitian tungsten-tin (W-Sn) polymetallic ore field, located in Hunan province, South China, is one of the largest ore fields in the Nanling Range (NLR). Two major metallogenic types appeared in this ore field, skarn-and quartz vein-type. They are distributed within Longshang, Heshuxia, Shaiheling, Hejiangkou, Goudalan, and so on. Hydrothermal zircons from two altered granites yielded U-Pb ages of 152.8 ± 1.1 Ma, and 226.0 ± 2.8 Ma, respectively. Two muscovite samples from ore-bearing quartz vein yielded 40 Ar/ 39 Ar plateau ages of 156.6 ± 0.7 Ma, 149.5 ± 0.8 Ma, respectively. Combined with the geological evidence, two metallogenic events are proposed in the Xitian ore field, with skarn-type W-Sn mineralization in Late Triassic (Indosinian) and quartz vein/greisen type W-Sn mineralization in Late Jurassic (Yanshanian). The relatively low Ce/Ce* ratios and high Y/Ho ratios in zircons from two altered granites indicate that the hydrothermal fluids of two metallogenic events are characterized by low oxygen fugacities and enrichment in F. The similar chondrite-normalized patterns between the skarn and Xitian Indosinian granites and Sr-Nd-Pb isotopic compositions of wolframite suggest that the metal sources for both types W-Sn mineralization are derived from a crustal source.
The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.
The maize (Zea mays L.) ZmCNR13 gene, encoding a protein of fw2.2-like (FWL) family, has been demonstrated to be involved in cell division, expansion, and differentiation. In the present study, the genomic sequences of the ZmCNR13 locus were re-sequenced in 224 inbred lines, 56 landraces and 30 teosintes, and the nucleotide polymorphism and selection signature were estimated. A total of 501 variants, including 415 SNPs and 86 Indels, were detected. Among them, 51 SNPs and 4 Indels were located in the coding regions. Although neutrality tests revealed that this locus had escaped from artificial selection during the process of maize domestication, the population of inbred lines possesses lower nucleotide diversity and decay of linkage disequilibrium. To estimate the association between sequence variants of ZmCNR13 and maize ear characteristics, a total of ten ear-related traits were obtained from the selected inbred lines. Four variants were found to be significantly associated with six ear-related traits. Among them, SNP2305, a non-synonymous mutation in exon 2, was found to be associated with ear weight, ear grain weight, ear diameter and ear row number, and explained 4.59, 4.61, 4.31, and 8.42% of the phenotypic variations, respectively. These results revealed that natural variations of ZmCNR13 might be involved in ear development and can be used in genetic improvement of maize ear-related traits.
Plant fw2.2-like (FWL) genes, encoding proteins harboring a placenta-specific eight domain, have been suggested to control fruit and grain size through regulating cell division, differentiation, and expansion. Here, we re-sequenced the nucleotide sequences of the maize ZmFWL7 gene, a member of the FWL family, in 256 elite maize inbred lines, and the associations of nucleotide polymorphisms in this locus with 11 ear-related traits were further detected. A total of 175 variants, including 159 SNPs and 16 InDels, were identified in the ZmFWL7 locus. Although the promoter and downstream regions showed higher nucleotide polymorphism, the coding region also possessed 61 SNPs and 6 InDels. Eleven polymorphic sites in the ZmFWL7 locus were found to be significantly associated with eight ear-related traits. Among them, two nonsynonymous SNPs (SNP2370 and SNP2898) showed significant association with hundred kernel weight (HKW), and contributed to 7.11% and 8.62% of the phenotypic variations, respectively. In addition, the SNP2898 was associated with kernel width (KW), and contributed to 7.57% of the phenotypic variations. Notably, the elite allele T of SNP2370 was absent in teosintes and landraces, while its frequency in inbred lines was increased to 12.89%. By contrast, the frequency of the elite allele A of SNP2898 was 3.12% in teosintes, and it was raised to 12.68% and 19.92% in landraces and inbred lines, respectively. Neutral tests show that this locus wasn’t artificially chosen during the process of domestication and genetic improvement. Our results revealed that the elite allelic variants in ZmFWL7 might possess potential for the genetic improvement of maize ear-related traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.