Summary
Global Navigation Satellite System (GNSS) positioning technology has had widespread applications in the structural health monitoring as its overall performance has improved significantly in the last two decades. It is capable of providing timely and accurate structural vibration information such as dynamic displacements and modal frequencies at higher performance than traditional accelerometers. The studies summarized in this paper focus on the improvement of the multi‐sensors and multi‐constellation data acquisition techniques, the improvement of multiple approaches for erroneous noise mitigation, and innovative modal parameter identification methods. We also detailed the applications of GNSS on the deformation monitoring for towers, chimneys, tall buildings, and bridges. With continuous enhancements in the algorithm and hardware of GNSS, it is expected that the application of GNSS technology can be expanded to other fields such as bridge cable‐force measurements and bridge weight‐in‐motion as well as structural deformation monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.