The fiber tension should be kept constant during the automated placement of fiber prepreg. The velocity of the fiber placement end-effector moving on complex aircraft panel mould surface varies rapidly, which greatly disturbs the precision of tension control. This paper proposes a tension control strategy combining active control and passive control. The pay-off motor controls the fiber tension directly and a passive dancer roll is designed theoretically as the equipment for attenuation of tension disturbance to realize the real-time compensation of low-frequency velocity variations. The nonlinear model of tension control system, which includes the dynamics of the passive dancer roll, is established, and the effect of dancer roll parameters on its disturbances attenuation performance is analyzed. The controller is designed using the H∞ mixed sensitivity method. An experimental tension control precision about 2% is obtained at stable placement speed on the automated fiber placement (AFP) machine. The experiments also indicated that the tension would not vary over 1 N at a maximum acceleration of 4 m/s2.
Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti) stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm) before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.