Three-dimensional (3D) human mesh sequences obtained by 3D scanning equipment are often used in film and television, games, the internet, and other industries. However, due to the dense point cloud data obtained by 3D scanning equipment, the data of a single frame of a 3D human model is always large. Considering the different topologies of models between different frames, and even the interaction between the human body and other objects, the content of 3D models between different frames is also complex. Therefore, the traditional 3D model compression method always cannot handle the compression of the 3D human mesh sequence. To address this problem, we propose a sequence compression method of 3D human mesh sequence based on the Laplace operator, and test it on the complex interactive behavior of a soccer player bouncing the ball. This method first detects the mesh separation degree of the interactive object and human body, and then divides the sequence into a series of fragments based on the consistency of separation degrees. In each fragment, we employ a deformation algorithm to map keyframe topology to other frames, to improve the compression ratio of the sequence. Our work can be used for the storage of mesh sequences and mobile applications by providing an approach for data compression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.