CRISPR-Cas9 technology has been widely used for genome engineering. Its RNA-guided endonuclease Cas9 binds specifically to target DNA and then cleaves the two DNA strands with HNH and RuvC nuclease domains. However, structural information regarding the DNA cleavage-activating state of two nuclease domains remains sparse. Here, we report a 5.2 Å cryo-EM structure of Cas9 in complex with sgRNA and target DNA. This structure reveals a conformational state of Cas9 in which the HNH domain is closest to the DNA cleavage site. Compared with two known HNH states, our structure shows that the HNH active site moves toward the cleavage site by about 25 and 13 Å, respectively. In combination with EM-based molecular dynamics simulations, we show that residues of the nuclease domains in our structure could form cleavage-compatible conformations with the target DNA. Together, these results strongly suggest that our cryo-EM structure resembles a DNA cleavage-activating architecture of Cas9.
Transcriptional regulation is one of the most important mechanisms controlling development and cellular functions in plants and animals. The Arabidopsis thaliana bHLH transcription factor (TF) DYSFUNCTIONL TAPETUM1 (DYT1) is required for normal male fertility and anther development and activates the expression of the bHLH010/bHLH089/bHLH091 genes. Here, we showed that DYT1 is localized to both the cytoplasm and nucleus at anther stage 5 but specifically to the nucleus at anther stage 6 and onward. The bHLH010/bHLH089/bHLH091 proteins have strong nuclear localization signals, interact with DYT1, and facilitate the nuclear localization of DYT1. We further found that the conserved C-terminal BIF domain of DYT1 is required for its dimerization, nuclear localization, transcriptional activation activity, and function in anther development. Interestingly, when the BIF domain of DYT1 was replaced with that of bHLH010, the DYT1 N -bHLH010 BIF chimeric protein shows nuclearpreferential localization at anther stage 5 but could not fully rescue the dyt1-3 phenotype, suggesting that the normal spatiotemporal subcellular localization of DYT1 is important for DYT1 function and/or that the BIF domains from different bHLH members might be functionally distinct. Our results support an important positive feedback regulatory mechanism whereby downstream TFs increase the function of an upstream TF by enhancing its nucleus localization through the BIF domain.
Hemagglutinin (HA) of influenza virus undergoes an irreversible conformational change at acidic pH, mediating viral fusion with the host endosomal membrane. To unravel the molecular basis of the pH-dependent stability of HA, we demonstrate by mutagenesis of the prototype HA of virus strain X31 (H3 subtype) that salt bridges, especially a tetrad salt bridge within the monomers, are crucial for folding and stability of the trimeric ectodomain. This complex (tetrad) salt bridge is highly conserved among influenza virus subtypes. Introducing additional sites of electrostatic attraction between monomers in the distal region enhanced the stability of ectodomain at low pH mimicking the natural variant H2 subtype. We propose that distinct salt bridges in the distal domain may contribute to the enhanced stability of HA of natural virus variants. This hypothesis may provide clues to understanding adaptations of virus strains (for example, avian influenza viruses) in order to preserve stability of the protein in the host-specific environment.
To better understand the structural origins of inhibitor selectivity of human phosphodieasterase families (PDEs 1-11), here we report the X-ray crystal structure of PDE2 in complex with a highly selective, nanomolar inhibitor (BAY60-7550) at 1.9 Å resolution, and the structure of apo PDE2 at 2.0 Å resolution. The crystal structures reveal that the inhibitor binds to the PDE2 active site by using not only the conserved glutamine-switch mechanism for substrate binding, but also a binding-induced, hydrophobic pocket that was not reported previously. In silico affinity profiling by molecular docking indicates that the inhibitor binding to this pocket contributes significantly to the binding affinity and thereby improves the inhibitor selectivity for PDE2. Our results highlight a structure-based design strategy that exploits the potential binding-induced pockets to achieve higher selectivity in the PDE inhibitor development.
A partial dissociation of the HA1 subunits of influenza virus hemagglutinin (HA) is considered to be the initial step of conformational changes of the HA ectodomain leading to a membrane fusion active conformation (L. Godley, J. Pfeifer, D. Steinhauer, B. Ely, G. Shaw, R. Kaufman, E. Suchanek, C. Pabo, J.J. Skehel, D.C. Wiley, and S. Wharton, 1992, Cell 68:635-645; G.W. Kemble, D.L.Bodian, J. Rose, I.A. Wilson, and J.M. White, 1992, J. Virol. 66:4940-4950). Here, we explore a mechanism that provides an understanding of the physical and chemical basis for such dissociation and relies on two essential observations. First, based on the x-ray structure of HA from X31 (I.A. Wilson, J.J. Skehel, and D.C. Wiley, 1981, Nature 289:366-373), and by employing techniques of molecular modeling, we show that the protonation of the HA1 subunits is enhanced at the conditions known to trigger conformational changes of the HA ectodomain. Second, we found that the dependence of the calculated relative degree of protonation of the HA1 domain on temperature and pH is similar to that observed experimentally for the conformational change of HA assessed by proteinase K sensitivity. We suggest that at the pH-temperature conditions typical for the conformational change of HA and membrane fusion, dissociation of the HA1 subunits is caused by the enhanced protonation of the HA1 subunits leading to an increase in the positive net charge of these subunits and, in turn, to a weakened attraction between them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.