To better understand the structural origins of inhibitor selectivity of human phosphodieasterase families (PDEs 1-11), here we report the X-ray crystal structure of PDE2 in complex with a highly selective, nanomolar inhibitor (BAY60-7550) at 1.9 Å resolution, and the structure of apo PDE2 at 2.0 Å resolution. The crystal structures reveal that the inhibitor binds to the PDE2 active site by using not only the conserved glutamine-switch mechanism for substrate binding, but also a binding-induced, hydrophobic pocket that was not reported previously. In silico affinity profiling by molecular docking indicates that the inhibitor binding to this pocket contributes significantly to the binding affinity and thereby improves the inhibitor selectivity for PDE2. Our results highlight a structure-based design strategy that exploits the potential binding-induced pockets to achieve higher selectivity in the PDE inhibitor development.
Eph-ephrin interactions control the signal transduction between cells and play an important role in carcinogenesis and other diseases. The interactions between Eph receptors and ephrins of the same subclass are promiscuous; there are cross-interactions between some subclasses, but not all. To understand how Eph-ephrin interactions can be both promiscuous and specific, we investigated sixteen energy landscapes of four Eph receptors (A2, A4, B2, and B4) interacting with four ephrin ligands (A1, A2, A5, and B2). We generated conformational ensembles and recognition energy landscapes starting from separated Eph and ephrin molecules and proceeding up to the formation of Eph-ephrin complexes. Analysis of the Eph-Ephrin recognition trajectories and the co-evolution entropy of 400 ligand binding domains of Eph receptor and 241 ephrin ligands identified conserved residues during the recognition process. Our study correctly predicted the promiscuity and specificity of the interactions and provided insights into their recognition. The dynamic conformational changes during Eph-ephrin recognition can be described by progressive conformational selection and population shift events, with two dynamic salt bridges between EphB4 and Ephrin-B2 contributing to the specific recognition. EphA3 cancer-related mutations lowered the binding energies. The specificity is not only controlled by the final stage of the interaction across the protein-protein interface, but also has large contributions from binding kinetics with the help of dynamic intermediates along the pathway from the separated Eph and ephrin to the Eph-ephrin complex.
Background:The transcriptional regulation of steroidogenic enzymes in the silkworm remains poorly understood. Results: Antp and POU-M2 are expressed in the PG and regulate the transcription of Phantom. Conclusion: Antp and POU-M2 coordinate the transcription of Phantom via a protein interaction. Significance: Our study indicates new roles for homeodomain proteins in regulating insect ecdysteroidogenesis.
First-principles quantum dynamics calculations show that charge carrier lifetimes, charge transport, and lattice stability are notably improved when BA (CH 3 (CH 2 ) 3 NH 3 + ) in BA 2 PbI 4 is replaced with MTEA (CH 3 (CH 2 ) 2 SNH 3 +
In this study, the metabolite profiling of three different parts of Crocus sativus L. was measured by using ultra‐performance liquid chromatography‐quadrupole time‐of‐flight mass spectrometry (UPLC‐QTof‐MS/MS). Multivariate statistical analysis was used to distinguish among the samples from different parts. A total of 54 compounds were identified in tepals, stigmas and stamens by UPLC‐QTof‐MS/MS. The results stated that chemical characteristics of saffron were obviously diverse in terms of the parts of flower. Through analysis, coniferin and crocin‐2 were special components in stigmas when compared to tepals and stamens. The content of flavonoids was high in tepals when compared with the stigmas. The tepal of saffron may processed as a source of flavonoids in the future. The research provided the basis for the theory that only the stigma can be used as medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.