Staphylococcus aureus is one of the major pathogens causing mastitis in dairy herds. The colonization of dairy cows and subsequent contamination of raw milk by S. aureus, especially strains exhibiting multidrug resistance and biofilm-forming and toxin-producing abilities, remains an important issue for both dairy farmers and public health. In this study, we investigated the prevalence, antimicrobial susceptibility, biofilm formation, and genetic diversity of S. aureus from subclinical bovine mastitis in dairy farms located in southern Xinjiang, China. Sixty-five isolates from 84 subclinical mastitic milk samples were identified as S. aureus. The resistance rates to penicillin, erythromycin, clindamycin, tetracycline, gentamicin, linezolid, rifampicin, quinupudin-dafupudin, ciprofloxacin, norfloxa-
IntroductionBiofilm formation is the major pathogenicity of Staphylococcus epidermidis (S. epidermidis), which enhances bacterial resistance to antibiotics. Isookanin has potential inhibitory activity on biofilm.MethodThe inhibiting mechanisms of isookanin against biofilm formation through surface hydrophobicity assay, exopolysaccharides, eDNA, gene expression analysis, microscopic visualization, and molecular docking were explored. Additionally, the combination of isookanin and β-lactam antibiotics were evaluated by the broth micro-checkerboard assay.ResultsThe results showed that isookanin could decrease the biofilm formation of S. epidermidis by ≥85% at 250 μg/mL. The exopolysaccharides, eDNA and surface hydrophobicity were reduced after treatment with isookanin. Microscopic visualization analysis showed that there were fewer bacteria on the surface of the microscopic coverslip and the bacterial cell membrane was damaged after treatment with isookanin. The down-regulation of icaB and up-regulation of icaR were observed after treatment with isookanin. Additionally, the RNAIII gene was significantly up-regulated (p < 0.0001) at the mRNA level. Molecular docking showed that isookanin could bind to biofilm-related proteins. This indicated that isookanin can affect biofilm formation at the initial attachment phase and the aggregation phase. The FICI index showed that the combination of isookanin and β-lactam antibiotics were synergistic and could reduce doses of antibiotics by inhibiting biofilm formation.DiscussionThis study improved the antibiotic susceptibility of S. epidermidis through inhibition of the biofilm formation, and provided a guidance for the treatment of antibiotic resistance caused by biofilm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.