In order to equip more high-energy pulse loads and improve power supply reliability, the vessel integrated power system (IPS) shows an increasing demand for high-voltage and large-capacity energy storage systems. Based on this background, this paper focuses on a super capacitor energy storage system based on a cascaded DC-DC converter composed of modular multilevel converter (MMC) and dual active bridges (DAB). The cascaded converter is called MMC-DAB for short. This paper analyzes the topology and modulation strategy of the system in detail. Taking into account the shortcomings of the traditional bidirectional power control strategy, this paper proposes a control strategy where the DAB module of each branch independently controls the voltage of the sub-module capacitor. The mathematical models of the traditional and the proposed control strategy are established. The stability of the two control strategies is analyzed and compared. Finally, a MW-level engineering prototype of the MMC-DAB energy storage system is designed and manufactured, and the effectiveness of the proposed control strategy was verified through experiments.INDEX TERMS Vessel integrated power system, super capacitor energy storage system, bidirectional power control; sub-module capacitor voltage control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.