IntroductionThe intrinsic heterogeneity of clinical septic shock is a major challenge. For clinical trials, individual patient management, and quality improvement efforts, it is unclear which patients are least likely to survive and thus benefit from alternative treatment approaches. A robust risk stratification tool would greatly aid decision-making. The objective of our study was to derive and test a multi-biomarker-based risk model to predict outcome in pediatric septic shock.MethodsTwelve candidate serum protein stratification biomarkers were identified from previous genome-wide expression profiling. To derive the risk stratification tool, biomarkers were measured in serum samples from 220 unselected children with septic shock, obtained during the first 24 hours of admission to the intensive care unit. Classification and Regression Tree (CART) analysis was used to generate a decision tree to predict 28-day all-cause mortality based on both biomarkers and clinical variables. The derived tree was subsequently tested in an independent cohort of 135 children with septic shock.ResultsThe derived decision tree included five biomarkers. In the derivation cohort, sensitivity for mortality was 91% (95% CI 70 - 98), specificity was 86% (80 - 90), positive predictive value was 43% (29 - 58), and negative predictive value was 99% (95 - 100). When applied to the test cohort, sensitivity was 89% (64 - 98) and specificity was 64% (55 - 73). In an updated model including all 355 subjects in the combined derivation and test cohorts, sensitivity for mortality was 93% (79 - 98), specificity was 74% (69 - 79), positive predictive value was 32% (24 - 41), and negative predictive value was 99% (96 - 100). False positive subjects in the updated model had greater illness severity compared to the true negative subjects, as measured by persistence of organ failure, length of stay, and intensive care unit free days.ConclusionsThe pediatric sepsis biomarker risk model (PERSEVERE; PEdiatRic SEpsis biomarkEr Risk modEl) reliably identifies children at risk of death and greater illness severity from pediatric septic shock. PERSEVERE has the potential to substantially enhance clinical decision making, to adjust for risk in clinical trials, and to serve as a septic shock-specific quality metric.
Glucagon-like peptide-2 (GLP-2) is a recently characterized intestine-derived peptide that exerts trophic activity in the small and large intestine. Whether circulating levels of GLP-2 are perturbed in the setting of human inflammatory bowel disease (IBD) remains unknown. The circulating levels of bioactive GLP-2-(1-33) compared with its degradation product GLP-2-(3-33) were assessed using a combination of RIA and HPLC in normal and immunocompromised control human subjects and patients hospitalized for IBD. The activity of the enzyme dipeptidyl peptidase IV (DP IV), a key determinant of GLP-2-(1-33) degradation was also assessed in the plasma of normal controls and subjects with IBD. The circulating levels of bioactive GLP-2-(1-33) were increased in patients with either ulcerative colitis (UC) or Crohn's Disease (CD; to 229 +/- 65 and 317 +/- 89%, P < 0.05, of normal, respectively). Furthermore, the proportion of total immunoreactivity represented by intact GLP-2-(1-33), compared with GLP-2-(3-33), was increased from 43 +/- 3% in normal healthy controls to 61 +/- 6% (P < 0.01) and 59 +/- 2% (P < 0.01) in patients with UC and CD, respectively. The relative activity of plasma DP IV was significantly reduced in subjects with IBD compared with normal subjects (1.4 +/- 0.3 vs. 5.0 +/- 1.1 mU/ml, respectively; P < 0.05). These results suggest that patients with active IBD may undergo an adaptive response to intestinal injury by increasing the circulating levels of bioactive GLP-2-(1-33), facilitating enhanced repair of the intestinal mucosal epithelium in vivo.
Glucagon-like peptide 1 (GLP-1) is a potent insulinotropic hormone currently under study as a therapeutic agent for type 2 diabetes. Since an understanding of the molecular mechanisms leading to high-affinity receptor (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.