Fertilization is an important practical measure in agricultural production. As an important nutrient element of plants, nitrogen (N) has a significant impact on the plant productivity and microbial function. Rhizosphere microorganisms affect plant growth and development, nitrogen uptake and utilization, and ecological adaptability. The interaction mechanism between plant and rhizosphere microorganisms is one of the hotspots in life science research and the key program of agricultural microorganism utilization. In this article, the relationship among plant root morphology and physiology, rhizosphere microorganisms, and nitrogen is reviewed, summarized, and prospected.
Based on the theory of ecological crop nutrient deficiency and compensation effect, the nitrogen (N) deficiency at tillering stage and N compensation at young panicle differentiation stage in rice (Oryza sativa L.) was selected to study. Four N treatments were treated, and the effects of N deficiency and compensation were investigated on grain yield, N uptake and utilization and the physiological characteristics of rice. The results showed that the yield per plant presented an equivalent compensatory effect. Double N compensation led to superiority in the number of effective panicle per plant, increased the activity of nitrate reductase and glutamine synthetase. The content of endogenous growth-inhibitory hormone abscisic acid (ABA) decreased in the leaves, photosynthesis was enhanced, and the number of tillers per plant increased after double N compensation. During maturation stage, the panicle dry weigh in T1 (double N compensation at young panicle differentiation stage, after N deficiency at tillering stage) was higher than that in CK1 (constant supply of N throughout different stages of growth) and the biomass per plant in T1 increased by 1.47% compared with CK1. N contents in all organs, N accumulation, and total N content were all higher in T1 during maturation stage. Moreover, N agronomic efficiency, N physiological efficiency, and N partial factor productivity were optimized for T1 and CK2 (constant N compensation at young panicle differentiation stage, after N deficiency at tillering stage) compared with CK1. This study contributes to the understanding of the physiological mechanisms underlying the compensation of N deficiency in rice.
Abrupt drought-flood alternation (T1) is a meteorological disaster that frequently occurs during summer in southern China and the Yangtze river basin, often causing a significant loss of rice production. In this study, the response mechanism of yield decline under abrupt drought-flood alternation stress at the panicle differentiation stage was analyzed by looking at the metabolome, proteome as well as yield and physiological and biochemical indexes. The results showed that drought and flood stress caused a decrease in the yield of rice at the panicle differentiation stage, and abrupt drought-flood alternation stress created a synergistic effect for the reduction of yield. The main reason for the decrease of yield per plant under abrupt drought-flood alternation was the decrease of seed setting rate. Compared with CK0 (no drought and no flood), the net photosynthetic rate and soluble sugar content of T1 decreased significantly and its hydrogen peroxidase, superoxide dismutase, peroxidase activity increased significantly. The identified differential metabolites and differentially expressed proteins indicated that photosynthesis metabolism, energy metabolism pathway and reactive oxygen species response have changed strongly under abrupt drought-flood alteration stress, which are factors that leads to the rice grain yield reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.