Existing power cyber-physical system (CPS) risk prediction results are inaccurate as they fail to reflect the actual physical characteristics of the components and the specific operational status. A new method based on dependent Markov chain for power CPS risk area prediction is proposed in this paper. The load and constraints of the non-uniform power CPS coupling network are first characterized, and can be utilized as a node state judgment standard. Considering the component node isomerism and interdependence between the coupled networks, a power CPS risk regional prediction model based on dependent Markov chain is then constructed. A cross-adaptive gray wolf optimization algorithm improved by adaptive position adjustment strategy and cross-optimal solution strategy is subsequently developed to optimize the prediction model. Simulation results using the IEEE 39-BA 110 test system verify the effectiveness and superiority of the proposed method.INDEX TERMS Cyber-physical system, Markov chain, risk region prediction, cross-adaptive grey wolf optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.