Angiostrongyliasis is an emerging communicable disease. Several different hosts are required to complete the life cycle of Angiostrongylus cantonensis. However, we lack a complete understanding of variability of proteins across different developmental stages and their contribution to parasite survival and progression. In this study, we extracted soluble proteins from various stages of the A. cantonensis life cycle [female adults, male adults, the fifth-stage female larvae (FL5), the fifth-stage male larvae (ML5) and third-stage larvae (L3)], separated those proteins using two-dimensional difference gel electrophoresis (2D-DIGE) at pH 4–7, and analyzed the gel images using DeCyder 7.0 software. This proteomic analysis produced a total of 183 different dominant protein spots. Thirty-seven protein spots were found to have high confidence scores (>95%) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Comparative proteomic analyses revealed that 29 spots represented cytoskeleton-associated proteins and functional proteins. Eight spots were unnamed proteins. Twelve protein spots that were matched to the EST of different-stage larvae of A. cantonensis were identified. Two genes and the internal control 18s were chosen for quantitative real-time PCR (qPCR) and the qPCR results were consistent with those of the DIGE studies. These findings will provide a new basis for understanding the characteristics of growth and development of A. cantonensis and the host–parasite relationship. They may also assist searches for candidate proteins suitable for use in diagnostic assays and as drug targets for the control of eosinophilic meningitis caused by A. cantonensis.
Background Toxoplasma gondii is a zoonotic pathogen that causes toxoplasmosis and leads to serious public health problems in developing countries. However, current clinical therapeutic drugs have some disadvantages, such as serious side effects, a long course of treatment and the emergence of drug-resistant strains. The urgent need to identify novel anti-Toxoplasma drugs has initiated the effective strategy of repurposing well-characterized drugs. As a principled screening for the identification of effective compounds against Toxoplasma gondii, in the current study, a collection of 666 compounds were screened for their ability to significantly inhibit Toxoplasma growth. Methods The inhibition of parasite growth was determined using a luminescence-based β-galactosidase activity assay. Meanwhile, the effect of compounds on the viability of host cells was measured using CCK8. To assess the inhibition of the selected compounds on discrete steps of the T. gondii lytic cycle, the invasion, intracellular proliferation and egress abilities were evaluated. Finally, a murine infection model of toxoplasmosis was used to monitor the protective efficacy of drugs against acute infection of a highly virulent RH strain. Results A total of 68 compounds demonstrated more than 70% parasite growth inhibition. After excluding compounds that impaired host cell viability, we further characterized two compounds, NVP-AEW541 and GSK-J4 HCl, which had IC50 values for parasite growth of 1.17 μM and 2.37 μM, respectively. In addition, both compounds showed low toxicity to the host cell. Furthermore, we demonstrated that NVP-AEW541 inhibits tachyzoite invasion, while GSK-J4 HCl inhibits intracellular tachyzoite proliferation by halting cell cycle progression from G1 to S phase. These findings prompted us to analyse the efficacy of the two compounds in vivo by using established mouse models of acute toxoplasmosis. In addition to prolonging the survival time of mice acutely infected with T. gondii, both compounds had a remarkable ability to reduce the parasite burden of tissues. Conclusions Our findings suggest that both NVP-AEW541 and GSK-J4 could be potentially repurposed as candidate drugs against T. gondii infection.
Autophagy process in Toxoplasma gondii plays a vital role in regulating parasite survival or death. Thus, once having an understanding of certain effects of autophagy on the transformation of tachyzoite to bradyzoite this will allow us to elucidate the function of autophagy during parasite development. Herein, we used three TgAtg proteins involved in Atg8 conjugation system, TgAtg3, TgAtg7 and TgAtg8 to evaluate the autophagy level in tachyzoite and bradyzoite of Toxoplasma in vitro based on Pru TgAtg7-HA transgenic strains. We showed that both TgAtg3 and TgAtg8 were expressed at a significantly lower level in bradyzoites than in tachyzoites. Importantly, the number of parasites containing fluorescence-labelled TgAtg8 puncta was significantly reduced in bradyzoites than in tachyzoites, suggesting that autophagy is downregulated in Toxoplasma bradyzoite in vitro. Moreover, after treatment with drugs, bradyzoite-specific gene BAG1 levels decreased significantly in rapamycin-treated bradyzoites and increased significantly in 3-MA-treated bradyzoites in comparison with control bradyzoites, indicating that Toxoplasma autophagy is involved in the transformation of tachyzoite to bradyzoite in vitro. Together, it is suggested that autophagy may serve as a potential strategy to regulate the transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.