Tumor metastasis and anticancer drug resistance are the major causes of mortality in patients with colorectal cancer (CRC). Due to the limitations of conventional biomarkers, it is urgent to identify novel and valid biomarkers to predict the progression and prognosis of CRC. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect MAGT1 expression in CRC clinical samples or cell lines. Bioinformatics analysis was used to investigate the association between MAGT1 alteration and clinicopathological features of patients with CRC. The present study revealed that the transcription levels of magnesium transporter 1 (MAGT1) were significantly increased in CRC tissues compared with matched adjacent normal tissues. Overexpression of MAGT1 was associated with advanced tumor stage, N and M classification. In addition, for patients who underwent chemotherapy, patients in the MAGT1-low expression group exhibited a longer overall survival (OS) time than patients in the high-expression group. Patients with CRC treated with chemotherapy had a longer OS time than those treated without chemotherapy in the MAGT1-low expression group but not in the MAGT1-high expression group. Furthermore, MAGT1 was a valid but not an independent prognostic factor for CRC. Therefore, the present study highlighted that MAGT1 may serve as a valid biomarker for predicting the development, progression and poor prognosis of CRC.
Materials and methodsCell culture. CRC cell lines HT-15, HT-8, HCT116, LS174T, CACO2, SW480, SW620, LOVO and the normal epithelial cell line FHC were obtained from American Type Culture Collection. All cells were maintained as previously
Background: Stemness acquirement is one of the hallmarks of cancer and the major reason for the chemoresistance and poor prognosis of colorectal cancer (CRC). Previous research has revealed the stimulatory role of paired related homeobox 1 (PRRX1) on CRC metastasis. However, the role of PRRX1 in stemness acquirement and chemoresistance of CRC is still not clear.Methods: A retrospective cohort study was performed to investigate the relationship between PRRX1 expression and multiple clinicopathological characteristics of CRC patients. The functional effects of PRRX1 on stemness and chemoresistance of CRC cells were validated by in vitro and in vivo assays. Gene set enrichment analysis (GSEA) and JASPAR software were performed to predict the underlying mechanisms.Enzyme-linked immunosorbent assay (ELISA), Western blot, immunofluorescence, and dual-luciferase reporter assays were used to confirm the PRRX1-mediated signaling and its downstream factors.Results: The expression of PRRX1 was up-regulated in CRC tissues and cell lines compared to normal epithelial tissues and cell lines. High expression of PRRX1 was tightly associated with the metastasis, chemoresistance, and poor prognosis of CRC patients. Additionally, PRRX1 significantly promoted the proliferation, viability, stemness, and chemoresistance of CRC cells, as well as the activation of the interleukin-6 (IL-6)/JAK2/STAT3 axis. Inhibiting the expression of IL-6 dramatically eliminated the effects of PRRX1 on CRC cell stemness and chemoresistance.Conclusions: PRRX1 plays a vital role in the stemness and chemoresistance of CRC cells via JAK2/ STAT3 signaling by targeting IL-6. Further, PRRX1 may be a valid biomarker for predicting the effect of chemotherapy and prognosis of CRC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.