Since the 1930s, due to the rapid development of the city and the increase of population, the demand from Beijing residents for water resources has gradually increased. Land deformation in the Beijing Plain is a serious issue. In order to warn of, and mitigate, disasters, it is urgently necessary to obtain the latest rate, extent, and temporal evolution of land subsidence in Beijing. Firstly, the temporal and spatial distribution characteristics of land deformation in Beijing during 2003–2020 were unveiled using the time-series interferometric synthetic aperture radar (InSAR) technique and two different satellite datasets, sentinel-1a/1b and ENVISAT ASAR. By means of combining calibration of InSAR results with the global positioning system (GPS), we studied the evolutionary process of long-term land subsidence in Beijing. The precision of our InSAR annual subsidence results is less than 10 mm. Land subsidence in Beijing is unevenly distributed, and so five main land subsidence zones were monitored. The time-series results showed that the rate of land subsidence rate continued to increase from 2003 to 2015, but has gradually shown a slowing trend from 2015 to 2020. Further, we used the quadratic polynomial fitting method to interpolate the time-series deformation results from 2010 to 2015, and compared these with GPS. The results demonstrated that although the InSAR observation method is not strictly registered with GPS in time, its deformation trend is consistent. In addition, the calibrated long time-series was consistent with the three deformation stages of land subsidence evolution in Beijing. Finally, we analyzed the deformation information obtained by InSAR technology in combination with land use type data, precipitation and groundwater data. The results demonstrated that the central area is mostly stable, and land deformation in the northeast is obvious and uneven. In addition, land use type and precipitation have little influence on land subsidence. Changes in land subsidence were closely related to changes in groundwater level, and seasonal variations in deformation correlated with precipitation.
Ankang Airport is constructed on an expansive soil-fill platform in Shaanxi Province, Central China. Since its completion in 2020, it has suffered surface deformation caused by the consolidation and settlement of the fill layer and instability of the expansive soil slope. Exploring the special deformation law of expansive soil regions by remote sensing and analyzing the deformation characteristics of airports in mountainous areas have always been key issues in related disaster research. Based on the intensity and phase observation data of 37 Sentinel-1 synthetic aperture radar images, this study obtained the spatio-temporal distribution of the deformation of Ankang Airport from May 2020 to October 2021. First, phase optimization was performed on the original interferograms. Second, the persistent scatterer synthetic aperture radar interferometry (PS-InSAR) method was applied to extract the surface deformation information of Ankang Airport, and the accuracy was evaluated. Finally, the singular spectrum analysis method was introduced to jointly analyze the deformation information obtained by the InSAR technology in combination with geological and climatic data. The results show that the excavation area of Ankang Airport was basically stable, the filling area had obvious surface and uneven deformation, and the expansive soil fill slope exhibits deformation characteristics strongly related to slope, rainfall, and fill depth. The deformation was mainly caused by consolidation and settlement, supplemented by the expansion and shrinkage deformation of the expansive soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.