Previous research has found that conjunction faces (whose internal features, e.g. eyes, nose, and mouth, and external features, e.g. hairstyle and ears, are from separate studied faces) and feature faces (partial features of these are studied) can produce higher false alarms than both old and new faces (i.e. those that are exactly the same as the studied faces and those that have not been previously presented) in recognition. The event-related potentials (ERPs) that relate to conjunction and feature faces at recognition, however, have not been described as yet; in addition, the contributions of different facial features toward ERPs have not been differentiated. To address these issues, the present study compared the ERPs elicited by old faces, conjunction faces (the internal and the external features were from two studied faces), old internal feature faces (whose internal features were studied), and old external feature faces (whose external features were studied) with those of new faces separately. The results showed that old faces not only elicited an early familiarity-related FN400, but a more anterior distributed late old/new effect that reflected recollection. Conjunction faces evoked similar late brain waveforms as old internal feature faces, but not to old external feature faces. These results suggest that, at recognition, old faces hold higher familiarity than compound faces in the profiles of ERPs and internal facial features are more crucial than external ones in triggering the brain waveforms that are characterized as reflecting the result of familiarity.
SUMMARYIn this paper, an efficient multi-modal medical image fusion approach is proposed based on local features contrast and bilateral sharpness criterion in nonsubsampled contourlet transform (NSCT) domain. Compared with other multiscale decomposition analysis tools, the nonsubsampled contourlet transform not only can eliminate the "blockeffect" and the "pseudo-effect", but also can represent the source image in multiple direction and capture the geometric structure of source image in transform domain. These advantages of NSCT can, when used in fusion algorithm, help to attain more visual information in fused image and improve the fusion quality. At the same time, in order to improve the robustness of fusion algorithm and to improve the quality of the fused image, two selection rules should be considered. Firstly, a new bilateral sharpness criterion is proposed to select the lowpass coefficient, which exploits both strength and phase coherence. Secondly, a modified SML (sum modified Laplacian) is introduced into the local contrast measurements, which is suitable for human vision system and can extract more useful detailed information from source images. Experimental results demonstrate that the proposed method performs better than the conventional fusion algorithm in terms of both visual quality and objective evaluation criteria. key words: image fusion, medical image, nonsubsampled contourlet transform
This paper investigates a new method of fault diagnoses and reliability analysis based on inverse fuzzy model method. The proposed method employs inverse fuzzy model solving method to estimate the component state based on the measured system performance and relationship about component state and system performance which is constructed by expert. The method is proved to be effective in fault diagnoses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.