In this work, we reported an anthracene carboxyimide-based chemosensor (AC-Phos) for colorimetric and ratiometric fluorescence detection of highly toxic phosgene, which displayed rapid response (<5 min) toward phosgene with a high selectivity and a low detection limit (2.3 nM). Furthermore, a facile testing membrane with a polystyrene immobilizing chemosensor has been fabricated for real-time visualizing of gaseous phosgene.
Aberrant levels of cysteine (Cys) in living cells are closely related to some diseases; thusin situvisualization of intracellular Cys is very helpful for the investigation of physiological and pathological processes.
A coumarin-based fluorescent probe was prepared for rapid and visual detection of benzoyl peroxide. The probe could quantitatively determine benzoyl peroxide with fast response (<6 min), high sensitivity, and low limit of detection (163 nM). The probe exhibited good response toward benzoyl peroxide with a significant color change from blue to yellow along with fluorescence color alteration from red to blue. The probe determined benzoyl peroxide in real food samples (wheat flour, noodle, and dumpling flour) with good recoveries (90−114%). Furthermore, the probe was prepared into a paper-based test kit to determine benzoyl peroxide (30−100 μM) in real food samples with noticeable color and fluorescence change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.