Intracellular nicotinamide phosphoribosyltransferase (iNAMPT) in neuron has been known as a protective factor against cerebral ischemia through its enzymatic activity, but the role of central extracellular NAMPT (eNAMPT) is not clear. Here we show that eNAMPT protein level was elevated in the ischemic rat brain after middle-cerebral-artery occlusion (MCAO) and reperfusion, which can be traced to at least in part from blood circulation. Administration of recombinant NAMPT protein exacerbated MCAO-induced neuronal injury in rat brain, while exacerbated oxygen-glucose-deprivation (OGD) induced neuronal injury only in neuron-glial mixed culture, but not in neuron culture. In the mixed culture, NAMPT protein promoted TNF-α release in a time- and concentration-dependent fashion, while TNF-α neutralizing antibody protected OGD-induced, NAMPT-enhanced neuronal injury. Importantly, H247A mutant of NAMPT with essentially no enzymatic activity exerted similar effects on ischemic neuronal injury and TNF-α release as the wild type protein. Thus, eNAMPT is an injurious and inflammatory factor in cerebral ischemia and aggravates ischemic neuronal injury by triggering TNF-α release from glia cells, via a mechanism not related to NAMPT enzymatic activity.
These results suggest that chronic intravenous infection with P. gingivalis in ApoE-/- mice could accelerate the development of atherosclerosis, possibly associated with mediating oxidative stress as well as inflammatory responses and disturbing the lipid profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.