In the present study, a recently described molecular approach, namely sequence-related amplified polymorphism (SRAP), which preferentially amplifies ORFs, was evaluated for the studies of genetic variation among Fasciola hepatica, Fasciola gigantica and the "intermediate" Fasciola from different host species and geographical locations in mainland China. Five SRAP primer combinations were used to amplify 120 Fasciola samples after ten SRAP primer combinations were evaluated. The number of fragments amplified from Fasciola samples using each primer combination ranged from 12 to 20, with an average of 15 polymorphic bands per primer pair. Fifty-nine main polymorphic bands were observed, ranging in size from 100 to 2000 bp, and SRAP bands specific to F. hepatica or F. gigantica were observed. SRAP fragments common to F. hepatica and the "intermediate" Fasciola, or common to F. gigantica and the "intermediate" Fasciola were identified, excised and confirmed by PCR amplification of genomic DNA using primers designed based on sequences of these SRAP fragments. Based on SRAP profiles, unweighted pair-group method with arithmetic averages clustering algorithm categorized all of the examined representative Fasciola samples into three groups, representing the F. hepatica, the "intermediate" Fasciola, or the F. gigantica. These results demonstrated the usefulness of the SRAP technique for revealing genetic variability between F. hepatica, F. gigantica and the "intermediate" Fasciola, and also provided genomic evidence for the existence of the "intermediate" Fasciola between F. hepatica and F. gigantica. This technique provides an alternative and a useful tool for the genetic characterization and studies of genetic variability in parasites.
Unlike its reported role in the cardiovascular diseases, little information is available for mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the cerebrovascular function. We investigated the different effects of ALDH2 genotypes on the risk of cerebral infarction between the genders, because different genders had different smoking and/or dinking status which are also risk factors for cerebral infarction. 247 healthy Chinese Han people (controls, group 1), 287 Chinese Han male patients with cerebral infarction (group 2), and 82 Chinese Han female patients with cerebral infarction (group 3) were involved in this study. The frequencies of the ALDH2*2 allele in group 3 were significantly higher than those in other groups (with P = 0.001 and P = 0.002, respectively). The difference of ALDH2*2 allele frequency between group 1 and group 2 was not significant (P = 0.652). After adjustment for smoking and drinking status, the male patients without smoking or drinking status (group 4) had higher ALDH2*2 allele frequency than group 1, but the difference was still not significant (P = 0.139). Thus, we conclude that ALDH2*2 allele may be a significant negative risk factor for cerebral infarction in Chinese women [odds ratio (OR) = 2.207, 95% CI 1.416-3.439]. But for Chinese male patients, the negative effects of ALDH2*2 allele on cerebral infarction which might be concealed by other risk factors were not significant.
Ent-kaurane diterpene compounds have attracted considerable attention in recent years due to its antitumor, antibacterial, and antiviral activities. However, the clinical development of natural kaurane diterpenes, for example, oridonin for cancer therapy has been hampered by its relatively moderate potency, limited bioavailability. Herein, we report a newly synthetic analog of natural ent-kaurane diterpene, DS2, which exhibits significantly improved activity of antiproliferation against various cancer cell lines relative to oridonin. DS2 treatment triggers the mitochondria-mediated apoptosis and cell cycle arrest in human esophageal cancer cell lines (EC9706, EC109). Interestingly, normal human esophageal epithelial cells (HEECs) and normal human liver cells (HL-7702) are both significantly more resistant to the growth inhibition by DS2 compared with esophageal cancer cells. The DS2-induced apoptosis in EC9706 cells correlated with the drop of mitochondrial membrane potential (MMP), release of cytochrome c into the cytosol and activation of caspase-9 and -3. The induction of proapoptotic proteins p21 and Bax were also observed in DS2-treated cells. The DS2-induced apoptosis was significantly attenuated by knockdown of Bax proteins. Meanwhile, the DS2 treatment caused generation of reactive oxygen species (ROS) in human esophageal cancer cells, but not in HEECs, which was attenuated by pretreatment with ROS scavenger N-acetylcysteine (NAC). More interestingly, the antioxidants pretreatment completely attenuated DS2 mediated loss of the MMP and apoptosis, as well as Bax expression and growth inhibition. In conclusion, the present study reveals that the mitochondria-mediated cell death by DS2 is associated with Bax regulation and ROS generation, and understanding the function and mechanism of DS2 will help us to design better anti-cancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.