Green and yellow-emitting 1,6- and 1,8-bis(phenylethynyl) pyrenes (dyes 7, 8, 9, and 10) with different intramolecular charge transfer (ICT) feature were synthesized and the effect of ICT on the photophysical properties of these derivatives were studied by UV-vis absorption spectra, fluorescence emission spectra, and DFT/TDDFT calculations. For the dyes with electron-pushing group (e.g., -dimethylamino, dye 8 and dye 10), structureless and solvent polarity-sensitive fluorescence emission spectra were observed. Conversely, dye with electron-withdrawing group (e.g., -CN, dye 7) shows structured and solvent polarity-independent emission spectra. OFF-ON fluorescent thiol probes 11 and 12 with 2,4-dinitrobenzenesulfonyl protected ethynylpyrene fluorophore were designed based on DFT/TDDFT calculations, which predicts dark state (S(1)) for these thiol probes (e.g., oscillator strength f = 0.0086 for S(1)<--S(0) transition of the probe 11). This dark state is induced by the ICT effect with ethynylated pyrene fluorophore as electron donor and 2,4-dinitrobenzenesulfonyl unit as electron acceptor. Cleavage of the 2,4-dinitrobenzenesulfonyl unit by thiol releases the free fluorophore, for which the lowest-lying excited state S(1) is no longer a dark state, but an emissive state (f = 0.9776 for S(1)<--S(0) transition). These theoretical predictions on the photophysical properties of the molecular probes were fully proved by experimental results. Our results demonstrated that the fluorescence OFF-ON switching of this kind of thiol probe is due to the termination of the ICT effect (which quenches the emission, by a dark S(1) state) by cleavage of the 2,4-dinitrobenzenesulfonyl unit (as acceptor of ICT effect) with thiols, not the re-establishment of the D-pi-A feature of the fluorophore. These investigation on the pyrene derived green-emitting fluorophores and the DFT/TDDFT calculation aided probe design suggest that future application of these results may prove useful toward the rational design of fluorophores or fluorescent probes with predetermined photophysical properties.
Green and environmentally friendly ionogels formed by a sugar surfactant were prepared in two kinds of imidazolium-based ionic liquids. The phase transition from ribbon structures to lamellar structures induced by temperature and the transition mechanism were investigated in detail by means of freeze-fracture TEM and field-emission SEM observations, as well as small-angle X-ray scattering measurements. The rheological properties and tribological properties of two kinds of ionogels were systematically investigated. The difference in the lubricating properties and antiwear capability can be explained well by the mechanical and viscoelastic properties, as well as the different microstructures of samples destroyed by shear forces. This work provides a better understanding of the relationship between the structures, rheological properties, and tribological properties of ionogels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.