Flat electrodes are useful in microbial fuel cells (MFCs) as close electrode spacing improves power generation. Carbon cloth and carbon paper materials typically used in hydrogen fuel cells, however, are prohibitively expensive for use in MFCs. An inexpensive carbon mesh material was examined here as a substantially less expensive alternative to these materials for the anode in an MFC. Pretreatment of the carbon mesh was needed to ensure adequate MFC performance. Heating the carbon mesh in a muffle furnace (450 degrees C for 30 min) resulted in a maximum power density of 922 mW/m2 (46 W/m3) with this heat-treated anode, which was 3% more power than that produced using a mesh anode cleaned with acetone (893 mW/ m2; 45 W/m3). This power density with heating was only 7% less than that achieved with carbon cloth treated by a high temperature ammonia gas process (988 mW/m2; 49 W/m3). When the carbon mesh was treated by the ammonia gas process, power increased to 1015 mW/m2(51 W/m3). Analysis of the cleaned or heated surfaces showed these processes decreased atomic O/C ratio, indicating removal of contaminants that interfered with charge transfer. Ammonia gas treatment also increased the atomic N/C ratio, suggesting that this process produced nitrogen related functional groups that facilitated electron transfer. These results show that low cost heat-treated carbon mesh materials can be used as the anode in an MFC, providing good performance and even exceeding performance of carbon cloth anodes.
2D materials are ideal for constructing flexible electrochemical energy storage devices due to their great advantages of flexibility, thinness, and transparency. Here, a simple one‐step hydrothermal process is proposed for the synthesis of nickel–cobalt phosphate 2D nanosheets, and the structural influence on the pseudocapacitive performance of the obtained nickel–cobalt phosphate is investigated via electrochemical measurement. It is found that the ultrathin nickel–cobalt phosphate 2D nanosheets with an Ni/Co ratio of 4:5 show the best electrochemical performance for energy storage, and the maximum specific capacitance up to 1132.5 F g−1. More importantly, an aqueous and solid‐state flexible electrochemical energy storage device has been assembled. The aqueous device shows a high energy density of 32.5 Wh kg−1 at a power density of 0.6 kW kg−1, and the solid‐state device shows a high energy density of 35.8 Wh kg−1 at a power density of 0.7 kW kg−1. These excellent performances confirm that the nickel–cobalt phosphate 2D nanosheets are promising materials for applications in electrochemical energy storage devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.