In this paper a new energetic co-crystal consisting of 1, 3,5,3,5, and nitroguanidine (NQ) was prepared using a vacuum freeze drying method. Scanning electron microscopy (SEM) revealed that the particle size was under 500 nm and the morphology was spherical. Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy suggest that hydrogen bonds exist between HMX and NQ molecules. Powder X-ray diffraction spectra (PXRD) indicated the product was different from the single components and their mechanical mixture. Thermal gravimetric analysis and differential scanning calorimetry (TGA/DSC) were employed to characterize the thermal behavior of the co-crystal and then the related thermodynamic parameters were calculated, which indicated that after co-crystallization the molecule of the co-crystal needed more energy to activate. The result of an impact sensitivity test indicated that the sensitivity was effectively reduced compared to neat HMX and the mechanical mixture. The density of the product was found to be 1.80 g cm À3 and the storage performance was also investigated.
In order to decrease the sensitivity and broaden the application of PETN, PETN/TKX-50 co-crystal with high energy and low sensitivity was prepared through the solvent/non-solvent method.
Ammonium perchlorate (AP)/Cu(OH)2 core‐shell nanocomposites were successfully synthesized using a facile ultrasonic assisted‐coprecipitation synthesis route. The obtained AP/Cu(OH)2 nanocomposites were characterized by means of powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Its thermal decomposition was studied under the non‐isothermal conditions with thermogravimetric analysis and differential scanning calorimeter (TG‐DSC) techniques. In this procedure, SEM and TEM observations revealed that Cu(OH)2 nanoparticles with an average size of 10–15 nm were uniformly deposited on the surface of AP particles. Detailed characterization results indicated that the existence of evidence of Cu(OH)2. As expected, it was found that the AP/Cu(OH)2 nanocomposites with mass fraction of 2 wt % Cu(OH)2 remarkably decreased the peak temperature of high temperature decomposition of AP by 80.2 °C from approximately 441.3 °C to 361.1 °C. As compared with pure AP, the AP/Cu(OH)2 nanocomposites show lower impact and friction sensitivity. These results may lead to potential applications of the AP/Cu(OH)2 nanocomposites in the composite solid propellants for accelerating the thermal decomposition of AP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.