Background Promoter evolution by synthetic promoter library (SPL) is a powerful approach to development of functional synthetic promoters to synthetic biology. However, it requires much tedious and time-consuming screenings because of the plethora of different variants in SPL. Actually, a large proportion of mutants in the SPL are significantly lower in strength, which contributes only to fabrication of a promoter library with a continuum of strength. Thus, to effectively obtain the evolved synthetic promoter exhibiting higher strength, it is essential to develop novel strategies to construct mutant library targeting the pivotal region rather than the arbitrary region of the template promoter. In this study, a strategy termed stepwise evolution targeting the spacer of core promoter (SETarSCoP) was established in Bacillus subtilis to effectively evolve the strength of bacterial promoter. Results The native promoter, P srfA , from B. subtilis , which exhibits higher strength than the strong promoter P43, was set as the parental template. According to the comparison of conservation of the spacer sequences between − 35 box and − 10 box among a set of strong and weak native promoter, it revealed that 7-bp sequence immediately upstream of the − 10 box featured in the regulation of promoter strength. Based on the conservative feature, two rounds of consecutive evolution were performed targeting the hot region of P srfA . In the first round, a primary promoter mutation library (pPML) was constructed by mutagenesis targeting the 3-bp sequence immediately upstream of the − 10 box of the P srfA . Subsequently, four evolved mutants from pPML were selected to construction of four secondary promoter mutation libraries (sPMLs) based on mutagenesis of the 4-bp sequence upstream of the first-round target. After the consecutive two-step evolution, the mutant P BH4 was identified and verified to be a highly evolved synthetic promoter. The strength of P BH4 was higher than P srfA by approximately 3 times. Moreover, P BH4 also exhibited broad suitability for different cargo proteins, such as β-glucuronidase and nattokinase. The proof-of-principle test showed that SETarSCoP successfully evolved both constitutive and inducible promoters. Conclusion Comparing with the commonly used SPL strategy, SETarSCoP facilitates the evolution process to obtain strength-evolved synthetic bacterial promoter through fabrication and screening of small-scale mutation libraries. This strategy will be a promising method to evolve diverse bacterial promoters to expand the toolbox for synthetic biology. Electronic supplementary material The online version of this article (10.1186/s12934-019-1148-3) contains suppleme...
Bacillus subtilis is an important Gram-positive bacterium for industrial biotechnology, which has been widely used to produce diverse high-value added chemicals and industrially and pharmaceutically relevant proteins. Robust and versatile toolkits for genome editing in B. subtilis are highly demanding to design higher version chassis. Although the Streptococcus pyogenes ( Sp ) CRISPR-Cas9 has been extensively adapted for genome engineering of multiple bacteria, it has many defects, such as higher molecular weight which leads to higher carrier load, low deletion efficiency and complexity of sgRNA construction for multiplex genome editing. Here, we designed a CRISPR-Cpf1-based toolkit employing a type V Cas protein, Cpf1 from Francisella novicida. Using this platform, we precisely deleted single gene and gene cluster in B. subtilis with high editing efficiency, such as sacA , ganA, ligD & ligV , and bac operon. Especially, an extremely large gene cluster of 38 kb in B. subtilis genome was accurately deleted from the genome without introducing any unexpected mutations. Meanwhile, the synthetic platform was further upgraded to a version for multiplex genome editing, upon which two genes sacA and aprE were precisely and efficiently deleted using only one plasmid harboring two targeting sequences. In addition, we successfully inserted foreign genes into the genome of the chassis using the CRISPR-Cpf1 platform. Our work highlighted the availability of CRISPR-Cpf1 to gene manipulation in B. subtilis , including the flexible deletion of a single gene and multiple genes or a gene cluster, and gene knock-in. The designed genome-editing platform was easily and broadly applicable to other microorganisms. The novel platforms we constructed in this study provide a promising tool for efficient genome editing in diverse bacteria.
Precise regulation of gene expression is fundamental for tailor-made gene circuit design in synthetic biology. Current strategies for this type of development are mainly based on directed evolution beginning with a native promoter template. The performances of engineered promoters are usually limited by the growth phase because only one promoter is recognized by one type of sigma factor (σ). Here, we constructed multiple-σ recognizable artificial hybrid promoters (AHPs) composed of tandems of dual and triple natural minimal promoters (NMPs). These NMPs, which use σ A , σ H and σ W , had stable functions in different growth phases. The functions of these NMPs resulted from an effect called transcription compensation, in which AHPs sequentially use one type of σ in the corresponding growth phase. The strength of the AHPs was influenced by the combinatorial order of each NMP and the length of the spacers between the NMPs. More importantly, the output of the precise regulation was achieved by equipping AHPs with synthetic ribosome binding sites and by redesigning them for induced systems. This strategy might offer promising applications to rationally design robust synthetic promoters in diverse chassis to spur the construction of more complex gene circuits, which will further the development of synthetic biology.
The extensive use of high-concentration copper (Cu) in feed additives, fertilizers, pesticides, and nanoparticles (NPs) inevitably causes significant pollution in the ecological environment. This type of chain pollution begins with animal husbandry: first, Cu accumulation in animals poisons them; second, high Cu enters the soil and water sources with the feces and urine to cause toxicity, which may further lead to crop and plant pollution; third, this process ultimately endangers human health through consumption of livestock products, aquatic foods, plants, and even drinking water. High Cu potentially alters the antibiotic resistance of soil and water sources and further aggravates human disease risks. Thus, it is necessary to formulate reasonable Cu emission regulations because the benefits of Cu for livestock and plants cannot be ignored. The present review evaluates the potential hazards and benefits of high Cu in livestock, the environment, the plant industry, and human health. We also discuss aspects related to bacterial and fungal resistance and homeostasis and perspectives on the application of Cu−NPs and microbial high-Cu removal technology to reduce the spread of toxicity risks to humans.
A robust and portable expression system is of great importance in enzyme production, metabolic engineering, and synthetic biology, which maximizes the performance of the engineered system. In this study, a tailor-made cobalt-induced expression system (CIES) was developed for low-cost and eco-friendly nitrile hydratase (NHase) production. First, the strong promoter P veg from Bacillus subtilis, the Ni(II)/Co(II) responsive repressor RcnR, and its operator were reorganized to construct a CIES. In this system, the expression of reporter green fluorescent protein (GFP) was specifically triggered by Co(II) over a broad range of concentration. The performance of the cobalt-induced system was evolved to version 2.0 (CIES 2.0) for adaptation to different concentrations of Co(II) through programming a homeostasis system that rebalances cobalt efflux and influx with RcnA and NiCoT, respectively. Harnessing these synthetic platforms, the induced expression of NHase was coupled with enzyme maturation by Co(II) in a synchronizable manner without requiring additional inducers, which is a unique feature relative to other induced systems for production of NHase. The yield of NHase was 111.2 ± 17.9 U/ml using CIES and 114.9 ± 1.4 U/ml using CIES 2.0, which has a producing capability equivalent to that of commonly used isopropyl thiogalactoside (IPTG)-induced systems. In a scale-up system using a 5-L fermenter, the yielded enzymatic activity reached 542.2 ± 42.8 U/ml, suggesting that the designer platform for NHase is readily applied to the industry. The design of CIES in this study not only provided a low-cost and eco-friendly platform to overproduce NHase but also proposed a promising pipeline for development of synthetic platforms for expression of metalloenzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.