The BeiDou Global Navigation Satellite System (BDS-3) can provide PPP-B2b satellite-based Precise Point Positioning (PPP) real-time service to the Asia–Pacific region via PPP-B2b signal transmitted from the three Geostationary Earth Orbit (GEO) satellites. This paper provides a comprehensive evaluation of the accuracies of the satellite’s precise real-time orbit and clock products, including BDS-3 PPP-B2b precise products and the precise real-time products provided by four IGS centers (CAS, DLR, GFZ, and WHU). In addition, the influences of these real-time precise satellite products on the PPP positioning accuracy with single-frequency and dual-frequencies are also studied. Furthermore, the accuracies of broadcast ephemeris and IGS ultra-rapid products are studied, as well as their impact on PPP accuracies. Results illustrate that the orbits accuracies of PPP-B2b orbits are 9.42 cm, 21.26 cm, and 28.65 cm in the radial, along-track, and cross-track components, which are slightly lower than those of real-time orbits provided by the four IGS centers. However, the accuracy of PPP-B2b clock biases is 0.18 ns, which is higher than those provided by IGS Real-Time Service (RTS). In the static positioning test, the 3D positioning accuracy of B1I+B3I dual-frequencies PPP and B1C single-frequency PPP are centimeter-level while using PPP-B2b service, which is slightly lower in horizontal components compared to those obtained based on IGS RTS products. The results of the dynamic vehicle test indicate that the positioning accuracies of B1I+B2b dual-frequency PPP are about 50 cm and 120 cm in horizontal and vertical components, which are close to those of B2b single-frequency PPP using PPP-B2b service. Generally, the PPP-B2b orbit and clock accuracies on real-time PPP present similar performance to that based on IGS RTS.
Due to the virtues of low-cost and high positioning accuracy, Single-Frequency Precise Point Positioning (SF-PPP) is becoming a prospective technique. However, SF-PPP is not as widely used as dual-frequency and triple-frequency PPP at present, owing to the effect of ionospheric delay residuals after model rectification. In recent years, with the evolution of multi-constellation Global Navigation Satellite Systems (multi-GNSS, i.e., GPS, BDS-2, and BDS-3), it has become possible to obtain credible and continuous positioning results using SF-PPP. However, such performance would be significantly degraded in challenging environments (i.e., boulevards, tunnels, and tall buildings). Under these circumstances, GNSS signals are obstructed, and it is difficult to provide sufficient observations for SF-PPP. Therefore, the Inertial Navigation System (INS) is employed to promote the positioning performance of SF-PPP. The PPP/INS integration is regarded as one of the most efficient approaches in GNSS-denied environments. To satisfy the request of supplying real-time positioning information, the Real-Time Services (RTS) of the International GNSS Service (IGS) provide real-time precise orbit and clock products for globally distributed users through the internet. In this paper, a real-time GPS/BDS-2/BDS-3 SF-PPP and INS tight integration model is proposed, and it is assessed using the data gathered by vehicle and real-time products afforded by CAS (Chinese Academy of Sciences), GFZ (Deutsche GeoForschungsZentrum), and WHU (Wuhan University). The outcomes illustrate the following: (1) GPS + BDS SF-PPP/INS can provide more accurate and continuous positioning solutions compared with those of GPS + BDS SF-PPP, with improvements of 52.8%, 31.1%, and 42.8% in the north, east, and vertical components, respectively. (2) In general, the orbit and clock products’ accuracies in terms of GPS afforded by the three analysis centers are consistent with each other. For BDS, the orbit product from WHU is more accurate compared to those of CAS and GFZ. However, the accuracy of the clock product afforded by WHU is lower compared with those provided by the other two centers, especially for BDS-2 satellites. (3) The positioning accuracy in terms of Root Mean Square (RMS) values based on GFZ products are much higher than the results based on CAS and WHU products in the three directions.
Since 23 June 2020, BDS-3 has been entirely operated and obtained the ability of global PNT (Positioning, Navigation, and Timing) services. Afterward, real-time Precise Point Positioning (PPP) service is available in China’s surrounding areas via BDS-3 PPP-B2b signal. However, such a real-time PPP service cannot maintain the high accuracy and continuity of positioning solutions in challenging environments, such as urban environments. For that, we carried out a model by integrating between-satellite single-differenced (BSSD) PPP, a low-cost Inertial Navigation System (INS), and an odometer via an extended Kalman filter. The performance of this integration model was assessed with vehicle-borne data. Results demonstrated that (1) the position RMS (Root Mean Square) of BSSD PPP are 64.33 cm, 53.47 cm, and 154.11 cm. Compared with BSSD PPP, about 31.2%, 23.3%, and 27.3% position improvements can be achieved by using INS. Further enhancements of position RMS benefiting from the odometer are 1.34%, 1.41%, and 1.73% in the three directions. (2) Anyway, the accuracy of BSSD PPP/INS/Odometer tightly coupled integration is slightly higher than that of undifferenced PPP/INS/Odometer integration, with average improvement percentages of 7.71%, 3.09%, and 0.27%. Meanwhile, the performance of BSSD PPP/INS/Odometer integration during the periods with satellite outages is better than the undifferenced PPP-based solutions. (3) The improvements in attitudes from an odometer are more significant on heading angle than the other two attitudes, with percentages of 25.00%. (4) During frequent GNSS outage periods, the reduction in average maximum position drifts provided by INS are 18.01%, 8.95%, and 20.74%. After integrating with an odometer, the drifts can be furtherly decreased by 25.11%, 15.96%, and 20.69%. For attitude, about 41.67% reduction in average maximum drifts of heading angles is obtained.
Owing to the developments of satellite-based and network-based real-time satellite precise products, the Precise Point Positioning (PPP) technique has been applied far and wide, especially since the PPP-B2b service was provided by the third-generation BeiDou Navigation Satellite System (BDS-3). However, satellite outages during dynamic application lead to significant degradation of the accuracy and continuity of PPP. A generally used method is integrating PPP with Inertial Measurement Units (IMUs) to enhance positioning performance. Previous works on this topic are usually based on IMU data at a high sampling rate and are mostly implemented in post-processing mode. This paper will carry out a compressive assessment of the impacts of different types of precise satellite products (real-time products from the CAS, DLR, GFZ, WHU, and the final one from GFZ), Doppler observations, and different sampling rates of IMU data on the performance of the tightly coupled integration of the BDS-3 B1I/B2b and the Inertial Navigation System (INS). Results based on a group of on-board experimental data illustrate that (1) the positioning accuracy with products supplied by the CAS and WHU are roughly consistent with those using the final products; (2) the Doppler observations can effectively improve the accuracies of velocity, attitude, and vertical position at the initial epochs and during the reconvergence periods, but have invisible influences on the overall positioning, velocity, and attitude determination; and (3) the impact of IMU data interval on the performance of PPP/INS tightly coupled integration is insignificant when there are enough available satellites. However, the divergent speed of position is visibly affected by the IMU sampling rate during satellite outage periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.