Deep learning methods have been widely used in the field of intelligent fault diagnosis due to their powerful feature learning and classification capabilities. However, it is easy to overfit depth models because of the large number of parameters brought by the multilayer-structure. As a result, the methods with excellent performance under experimental conditions may severely degrade under noisy environment conditions, which are ubiquitous in practical industrial applications. In this paper, a novel method combining a one-dimensional (1-D) denoising convolutional autoencoder (DCAE) and a 1-D convolutional neural network (CNN) is proposed to address this problem, whereby the former is used for noise reduction of raw vibration signals and the latter for fault diagnosis using the de-noised signals. The DCAE model is trained with noisy input for denoising learning. In the CNN model, a global average pooling layer, instead of fully-connected layers, is applied as a classifier to reduce the number of parameters and the risk of overfitting. In addition, randomly corrupted signals are adopted as training samples to improve the anti-noise diagnosis ability. The proposed method is validated by bearing and gearbox datasets mixed with Gaussian noise. The experimental result shows that the proposed DCAE model is effective in denoising and almost causes no loss of input information, while the using of global average pooling and input-corrupt training improves the anti-noise ability of the CNN model. As a result, the method combined the DCAE model and the CNN model can realize high-accuracy diagnosis even under noisy environment.
With the development of information technology, intermodal transport research pays more attention to dynamic optimization and multi-role cooperation. The core issue of this paper was to realize container routing with dynamic adjustment, real-time optimization, and multi-role cooperation characteristics in the intermodal transport network. This paper first introduces the Intermodal Transport Cooperation Protocol (ITCP) that describes the operation and analysis of intermodal transport systems with the concept of encapsulation and layering. Then, a new network flow control method was built based on Model Predictive Control (MPC) in the ITCP framework. The method takes real-time information from all ITCP layers as input and generates flow control decisions for containers. To evaluate the method’s effectiveness, a discrete event simulation experiment is applied. The results show that the proposed method outperforms the all-or-nothing method in scenarios with high freight volume, which means the method proposed in this paper can effectively balance the network transport load and reduce network operating costs. The research of this paper may throw some new light on intermodal transport research from the perspectives of digitization, multi-role cooperation, dynamic optimization, and system standardization.
Accurate degradation state recognition of rolling bearing is critical to effective condition based on maintenance for improving reliability and safety. In this work, a new architecture is proposed to recognize the degradation state of the rolling bearing. Firstly, the time-domain features including RMS, kurtosis, skewness and RMSEE, and Mel-frequency cepstral coefficients features are extracted from bearing vibration signals, which are then used as the input of k-means algorithm. These unlabeled features are clustered by k-means in order to define the different categories of the bearing degradation state. In this way, the original vibration signals can be labeled. Then, the convolutional neural network recognition model is built, which takes the bearing vibration signals as input, and outputs the degradation state category. So, interference brought by human factors can be eliminated, and further, the bearing degradation can be grasped so as to make maintenance plan in time. The proposed method was tested by bearing run-to-failure dataset provided by the Center for Intelligent Maintenance System, and the result proved the feasibility and reliability of the methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.