In this paper, binder-free high-performance nanocomposite of Fe3O4/oxygen-functionalized g-C3N4 is fabricated thorugh a one-pot electrophoretic-electrochemical (EP-EC) process. In this process, Fe3O4 nanoparticles are in situ nucluated through a two-step electochemical-chemical...
Todays, metal-organic frameworks (MOFs) and their derived structures have been extensively investigated as the novel electrode materials in energy storage area due to their stable porous architectures and exceptionally large specific surface area. In this study, bimetallic Ni,Zn-MOF is synthesized onto Ni foam via a novel indirect cathodic electrodeposition method for the first time. After that, the fabricated Ni,Zn-MOFs onto Ni foam was converted to corresponding bi-metal hydroxide@C/Ni foam through direct chemical treating with 6M KOH solution. The obtained Ni,Zn-MOFs/NF and Ni2 − xZnx (OH)2@C/NF electrodes are characterized through XRD, FT-IR, FE-SEM and EDS analyses. These analyses results confirmed deposition of well-defined crystalline porous sheet-like structures of Ni3 − xZnx(BTC)2 deposited onto Ni foam, where the hydroxide@C electrode was also exhibited similar morphology. As the binder-free electrode, the as-prepared Ni,Zn-MOF@Ni foam exhibited the superior storage capacities of 356.1 mAh g− 1 and 255.5 mAh g− 1 as well as good cycling stabilities of 94.2 % and 84.5 % after 6000 consecutive charge/discharge cycles at the current densities of 5 and 15 A g− 1, respectively. On the other hand, Ni,Zn-MOF derived hydroide@C/Ni foam presented the superior capacities of 545 mAh g− 1 and 406 mAh g− 1 as well as proper cycle lifes of 91.8 % and 78.3 % after 6000 cycling at the applied loads of 5 and 15 A g− 1, respectively. Based on these findings, both of these fabricated battery-type electrodes are introduced as the promising candidates for use in energy storage devices.
In this paper, porous alumina continuum (PAC) was prepared with alumina powders (APs) by the gel-casting method and was applied to obtain silicone elastomer (SR) composites (PAC/SR) by the impregnating process. The structure was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influences of PAC on thermal conductivity and dielectric permittivity of PAC/SR composites were studied in comparison with AP/SR composites. When the alumina content was 14 vol%, the thermal conductivity of the PAC/SR composites reached 0.84 W·(m·K)−1, which was 3.1 times higher than that of the AP/SR composites. The thermal conductivity of PAC/SR and AP/SR was simulated by theoretical models, and the interfacial thermal resistance was calculated by effective medium theory, which indicated the advantages of PAC in enhancing the thermal conductivity of SR-based composites and the reduced interfacial thermal resistance between PAC and SR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.