Breast cancer is one of main causes of death for women. Most of the existing survival analyses focus on the features' associations with whether the patients may survive five years or not. The personalized question remains largely unresolved about how long a breast cancer patient will live. This study aims to predict the patient-specific survival time of breast cancer patients. It formulates the personalized question into two machine learning problems. The first problem is the binary classification of whether a patient will live longer than five years or not. The second one is to build a regression model to predict the patient's survival time within five years. The methylome of a breast cancer patient is used for the prediction. A new algorithm Crystall is presented to find the methylomic features for this regression model. Our models perform well in the above two problems, and achieve the mean absolute error (MAE) of about 1 month for predicting how long a breast cancer patient will live within five years. The detected biomarker genes demonstrate close connections with breast cancers.
Motivation. The worldwide incidence and mortality rates of melanoma are on the rise recently. Melanoma may develop from benign lesions like skin moles. Easy-to-use mole detection software will help find the malignant skin lesions at the early stage. Results. This study developed mole detection and segmentation software DiaMole using mobile phone images. DiaMole utilized multiple deep learning algorithms for the object detection problem and mole segmentation problem. An object detection algorithm generated a rectangle tightly surrounding a mole in the mobile phone image. Moreover, the segmentation algorithm detected the precise boundary of that mole. Three deep learning algorithms were evaluated for their object detection performance. The popular performance metric mean average precision (mAP) was used to evaluate the algorithms. Among the utilized algorithms, the Faster R-CNN could achieve the best mAP = 0.835, and the integrated algorithm could achieve the mAP = 0.4228. Although the integrated algorithm could not achieve the best mAP, it can avoid the missing of detecting the moles. A popular Unet model was utilized to find the precise mole boundary. Clinical users may annotate the detected moles based on their experiences. Conclusions. DiaMole is user-friendly software for researchers focusing on skin lesions. DiaMole may automatically detect and segment the moles from the mobile phone skin images. The users may also annotate each candidate mole according to their own experiences. The automatically calculated mole image masks and the annotations may be saved for further investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.