We reported a new microfluidic system integrated with worm responders for evaluating the environmental manganese toxicity. The micro device consists of worm loading units, worm observing chambers, and a radial concentration gradient generator (CGG). Eight T-shape worm loading units of the micro device were used to load the exact number of worms into the corresponding eight chambers with the assistance of worm responders and doorsills. The worm responder, as a key component, was employed for performing automated worm-counting assay through electric impedance sensing. This label-free and non-invasive worm-counting technique was applied to the microsystem for the first time. In addition, the disk-shaped CGG can generate a range of stepwise concentrations of the appointed chemical automatically and simultaneously. Due to the scalable architecture of radial CGG, it has the potential to increase the throughput of the assay. Dopaminergic (DAergic) neurotoxicity of manganese on C. elegans was quantitatively assessed via the observation of green fluorescence protein-tagged DAergic neurons of the strain BZ555 on-chip. In addition, oxidative stress triggered by manganese was evaluated by the quantitative fluorescence intensity of the strain CL2166. By scoring the survival ratio and stroke frequency of worms, we characterized the dose- and time-dependent mobility defects of the manganese-exposed worms. Furthermore, we applied the microsystem to investigate the effect of natural antioxidants to protect manganese-induced toxicity.
Diethylnitrosamine (DEN) is present in food, water, and daily supplies and is regarded as a toxicant of carcinogenicity. The developmental toxicity of DEN has been rarely reported as yet. In this study, zebrafish were exposed to different concentrations of DEN at 6 h post-fertilization (hpf) to access embryonic toxicity of the compound. The results show that DEN resulted in negative effects of hatching rate, heartbeat, body length, and spontaneous movement. Deformities, including notochord malformation, pericardium edema, embryonic membrane turbidity, tail hypoplasia, yolk sac deformity, and growth retardation, happened during exposure period. Moreover, production of reactive oxygen species (ROS) significantly increased after DEN treatment. Then, alterations of the expression level of oxidative stress-related genes were observed in our results. To our knowledge, this is the first study concerning the effect of DEN on zebrafish. And from the information of our research, we speculated that development toxicity of DEN should be related to the excessive oxidative stress.
Cerebral deposition of amyloid β-peptide (Aβ), a fundamental feature of Alzheimer's disease (AD), damages the neurocytes and impairs the cognition functions and associative learning memory of AD patients. A series of novel 2-arylethenylquinoline derivatives were synthesized and evaluated in our previous study, which inhibited Aβ aggregation in vitro effectively at the concentration of 20 μmol/L and exhibited high antioxidant activity. In order to verify the capacity of anti-AD in vivo, the transgenic Caenorhabditis elegans (C. elegans) strain CL2355 expressing neural Aβ was employed as the AD model to investigate the neuroprotective activity of seven high-potential compounds (4a1, 4a2, 4b1, 4b2, 4c1, 4c2, 4c3) selected from those derivatives. Learning memory associated chemotaxis assay was performed to evaluate the neural repairment capacity. The underlying mechanism was investigated by mRNA analysis of Aβ gene and heat shock protein genes (hsp-16.1 and hsp-16.2) and Western blot of Aβ. Our data indicated that among seven tested compound, 4b1 and 4c2 reduced Aβ-induced stress, suppressed the expression of neural Aβ monomers and toxic oligomers, and recovered the damaged associative learning memory in C. elegans AD model. These findings further confirmed their potentials to become valuable agents for AD therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.