Galectin-3 (Gal-3) has been implicated in pancreatic ductal adenocarcinoma (PDAC), and its candidacy as a therapeutic target has been evaluated. Gal-3 is widely upregulated in tumors, and its expression is associated with the development and malignancy of PDAC. In the present study, we demonstrate that a polysaccharide, RN1, purified from the flower of Panax notoginseng binds to Gal-3 and suppresses its expression. In addition, RN1 markedly inhibits PDAC cells growth in vitro, in vivo and in patient-derived xenografts. Mechanistically, RN1 binds to epidermal growth factor receptor (EGFR) and Gal-3, thereby disrupting the interaction between Gal-3 and EGFR and downregulating extracellular-related kinase (ERK) phosphorylation and the transcription factor of Gal-3, Runx1 expression. Inhibiting the expression of Runx1 by RN1, suppresses Gal-3 expression and inactivates Gal-3-associated signaling pathways, including the EGFR/ERK/Runx1, BMP/smad/Id-3 and integrin/FAK/JNK signaling pathways. In addition, RN1 can also bind to bone morphogenetic protein receptors (BMPR1A and BMPR2) and block the interaction between Gal-3 and the BMPRs. Thus, our results suggest that a novel Gal-3 inhibitor RN1 may be a potential candidate for human PDAC treatment via multiple targets and multiple signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.