In this paper, a crystal plasticity model considering the irradiation effect based on the thermal activation theory is established. The evolutions of screw dislocations, edge dislocations, and stacking fault tetrahedrals (SFTs) (induced by irradiation) are included into the model. The interactions between dislocations and irradiation-induced SFTs are also considered. The constitutive model is numerically implemented on the ABAQUS platform through UMAT subroutine and applied to study the irradiation effect on the mechanical behavior of pure copper. The mechanical properties of single and polycrystalline copper are studied, and the simulation results show that the constitutive model can properly predict the mechanical behavior of irradiated pure copper. Especially for polycrystalline copper, the simulation results are in good agreement with the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.