Lithium–sulfur batteries are appealing as high‐energy storage systems and hold great application prospects in wearable and portable electronics. However, severe shuttle effects, low sulfur conductivity, and especially poor electrode mechanical flexibility restrict sulfur utilization and loading for practical applications. Herein, high‐flux, flexible, electrospun fibrous membranes are developed, which succeed in integrating three functional units (cathode, interlayer, and separator) into an efficient composite. This structure helps to eliminate negative interface effects, and effectively drives synergistic boosts to polysulfide confinement, electron transfer, and lithium‐ion diffusion. It delivers a high initial capacity of 1501 mA h g−1 and a discharge capacity of 933 mA h g−1 after 400 cycles, with slow capacity attenuation (0.069% per cycle). Even under high sulfur loading (13.2 mg cm−2, electrolyte/sulfur ratio = 6 mL g−1) or in an alternative folded state, this three‐in‐one membrane still exhibits high areal capacity (11.4 mA h cm−2) and exceptional application performance (powering an array of over 30 light‐emitting diodes (LEDs)), highlighting its huge potential in high‐energy flexible devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.