Blockchain-based decentralized cryptocurrencies have drawn much attention and been widely-deployed in recent years. Bitcoin, the first application of blockchain, achieves great success and promotes more development in this field. However, Bitcoin encounters performance problems of low throughput and high transaction latency. Other cryptocurrencies based on proof-of-work also inherit the flaws, leading to more concerns about the scalability of blockchain. This paper attempts to cover the existing scaling solutions for blockchain and classify them by level. In addition, we make comparisons between different methods and list some potential directions for solving the scalability problem of blockchain. INDEX TERMS Blockchain, scalability.
As a key technology in the 5G era, mobile edge computing (MEC) has developed rapidly in recent years. MEC aims to reduce the service delay of mobile users, while alleviating the processing pressure on the core network. MEC can be regarded as an extension of cloud computing on the user side, which can deploy edge servers and bring computing resources closer to mobile users, and provide more efficient interactions. However, due to the user's dynamic mobility, the distance between the user and the edge server will change dynamically, which may cause fluctuations in Quality of Service. Therefore, when a mobile user moves in the MEC environment, certain approaches are needed to schedule services deployed on the edge server to ensure the user experience. In this article, we model service scheduling in MEC scenarios and propose a delay-aware and mobility-aware service management approach based on concise probabilistic methods. This approach has low computational complexity and can effectively reduce service delay and migration costs. Furthermore, we conduct experiments by utilizing multiple realistic datasets and use iFogSim to evaluate the performance of the algorithm. The results show that our proposed approach can optimize the performance on service delay, with 8%-20% improvement and reduce the migration cost by more than 75% compared with baselines during the rush hours.
Cloud Computing paradigm has revolutionized IT industry and be able to offer computing as the fifth utility. With the pay-as-you-go model, cloud computing enables to offer the resources dynamically for customers anytime. Drawing the attention from both academia and industry, cloud computing is viewed as one of the backbones of the modern economy. However, the high energy consumption of cloud data centers contributes to high operational costs and carbon emission to the environment. Therefore, Green cloud computing is required to ensure energy efficiency and sustainability, which can be achieved via energy efficient techniques. One of the dominant approaches is to apply energy efficient algorithms to optimize resource usage and energy consumption. Currently, various virtual machine consolidationbased energy efficient algorithms have been proposed to reduce the energy of cloud computing environment. However, most of them are not compared comprehensively under the same scenario, and their performance is not evaluated with the same experimental settings. This makes users hard to select the appropriate algorithm for their objectives. To provide insights for existing energy efficient algorithms and help researchers to choose the most suitable algorithm, in this paper, we compare several state-of-the-art energy efficient algorithms in depth from multiple perspectives, including architecture, modelling and metrics. In addition, we also implement and evaluate these algorithms with the same experimental settings in CloudSim toolkit. The experimental results show the performance comparison of these algorithms with comprehensive results. Finally, detailed discussions of these algorithms are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.