Amorphous drug formulations exploiting drug–drug interactions have been extensively studied. This study aims to develop a transdermal system containing an amorphous complex of the nonsteroidal anti-inflammatory drug (NSAID) flurbiprofen (FLU) and lidocaine (LDC) for alleviating chronic pain. The high-viscosity complex between FLU and LDC (Complex) was obtained by heating in ethanol. For the complex, attenuated total reflection-Fourier transform infrared spectroscopy showed a shift in the carboxy-group-derived peak of FLU, and differential scanning calorimetry indicated the endothermic peaks associated with the melting of FLU and LDC disappeared. 13C dipolar decoupling and 15N cross-polarization magic-angle spinning nuclear magnetic resonance measurement suggested the interaction between the carboxyl group of FLU and the secondary amine of LDC. The interaction between the aromatic rings of FLU and LDC contributed to the molecular complex formation. The solubility of FLU from the complex was about 100 times greater than FLU alone. The skin permeation flux of FLU from the complex through the hairless mouse skin was 3.8 times higher than FLU alone in hypromellose gel. Thus, adding LDC to the formulation can be an effective method for enhancing the skin permeation of NSAIDs, which can prove useful for treating chronic pain and inflammatory diseases.
Famotidine (FMT) is a competitive histamine-2 (H2) receptor antagonist that inhibits gastric acid secretion for the treatment of Gastroesophageal reflux disease. To study the promoting effect and mechanism of terpenes, including l-menthol, borneol, and geraniol, as chemical enhancers, FMT was used as a model drug. Attenuated total reflectance-Fourier transform IR spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to explore the effects of terpenes on the skin. Hairless mouse skin was mounted on Franz-type diffusion cell, and skin permeation experiment of FMT hydrogel was carried out. The results suggested that the thermodynamic activity influenced the permeability of the drug, and the main mechanism of terpenes to enhance skin permeation of the drug was based on increasing the fluidity of the intercellular lipids. Moreover, it was revealed that l-menthol simultaneously relaxed the packing structure and lamellar structure, whereas geraniol had a great influence on the lamellar structure only. Collectively, all terpenes had a promoting effect on skin permeation of FMT, indicating their potential as chemical enhancers to change the microstructure of stratum corneum and improve the permeation of FMT through the skin, and it has great potential to be used in transdermal formulations of FMT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.