Endophytic fungi can be beneficial to plant growth. However, the molecular mechanisms underlying colonization of Acremonium spp. remain unclear. In this study, a novel endophytic Acremonium strain was isolated from the buds of Panax notoginseng and named Acremonium sp. D212. The Acremonium sp. D212 could colonize the roots of P. notoginseng, enhance the resistance of P. notoginseng to root rot disease, and promote root growth and saponin biosynthesis in P. notoginseng. Acremonium sp. D212 could secrete indole‐3‐acetic acid (IAA) and jasmonic acid (JA), and inoculation with the fungus increased the endogenous levels of IAA and JA in P. notoginseng. Colonization of the Acremonium sp. D212 in the roots of the rice line Nipponbare was dependent on the concentration of methyl jasmonate (MeJA) (2–15 μmol/L) and 1‐naphthalenacetic acid (NAA) (10–20 μmol/L). Moreover, the roots of the JA signaling‐defective coi1‐18 mutant were colonized by Acremonium sp. D212 to a lesser degree than those of the wild‐type Nipponbare and miR393b‐overexpressing lines, and the colonization was rescued by MeJA but not by NAA. It suggests that the cross‐talk between JA signaling and the auxin biosynthetic pathway plays a crucial role in the colonization of Acremonium sp. D212 in host plants.
Transposable elements exist widely throughout plant genomes and play important roles in plant evolution. Auxin is an important regulator that is traditionally associated with root development and drought stress adaptation. The DEEPER ROOTING 1 (DRO1) gene is a key component of rice drought avoidance. Here, we identified a transposon that acts as an autonomous auxin-responsive promoter and its presence at specific genome positions conveys physiological adaptations related to drought avoidance. Rice varieties with a high and auxin-mediated transcription of DRO1 in the root tip show deeper and longer root phenotypes and are thus better adapted to drought. The INDITTO2 transposon contains an auxin response element and displays auxin-responsive promoter activity; it is thus able to convey auxin regulation of transcription to genes in its proximity. In the rice Acuce, which displays DRO1-mediated drought adaptation, the INDITTO2 transposon was found to be inserted at the promoter region of the DRO1 locus. Transgenesis-based insertion of the INDITTO2 transposon into the DRO1 promoter of the non-adapted rice variety Nipponbare was Yiting Zhao, Lixia Wu and Qijing Fu should be considered joint first authors.
Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t-and clathrinmediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrinmediated trafficking as key components.
Root system architecture (RSA) and tiller are important agronomic traits. However, the mechanisms of the IGT family genes regulate RSA and tiller development in different rice varieties remain unclear. In this study, we demonstrated that 38 rice varieties obtained from Yuanyang Hani’s terraced fields with different RSA and could be classified into six groups based on the ratio of root length and width. We found a positive correlation between RSA (including root width, length, and area) and tiller number in most of rice varieties. Furthermore, the IGT family genes Deeper Rooting 1 (DRO1), LAZY1, TAC1, and qSOR1 showed different expression patterns when rice grown under irrigation and drought conditions. Moreover, the qSOR1 gene had higher levels in the roots and tillers, and accompanied with higher levels of PIN1b gene in roots when rice grown under drought environmental condition. DRO1 gene had two single nucleotide polymorphisms (SNPs) in the exon 3 sequences and showed different expression patterns in the roots and tillers of the 38 rice varieties. Overexpression of DRO1 with a deletion of exon 5 caused shorter root length, less lateral roots and lower levels of LAZY1, TAC1, and qSOR1. Further protein interaction network, microRNA targeting and co-expression analysis showed that DRO1 plays a critical role in the root and tiller development associated with auxin transport. These data suggest that the RSA and tiller development are regulated by the IGT family genes in an intricate network way, which is tightly related to rice genetic background in rice adapting to different environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.