BackgroundThe low seed vigor and poor field emergence are main factors that restricting the extension of sweet corn in China. Spermidine (Spd) plays an important role in plant growth and development, but little is known about the effect of Spd on sweet corn seed germination. Therefore the effect of exogenous Spd on seed germination and physiological and biochemical changes during seed imbibition of Xiantian No.5 were investigated in this study.ResultsSpd soaking treatment not only improved seed germination percentage but also significantly enhanced seed vigor which was indicated by higher germination index, vigor index, shoot heights and dry weights of shoot and root compared with the control; while exogenous CHA, the biosynthesis inhibitor of Spd, significantly inhibited seed germination and declined seed vigor. Spd application significantly increased endogenous Spd, gibberellins and ethylene contents and simultaneously reduced ABA concentration in embryos during seed imbibition. In addition, the effects of exogenous Spd on H2O2 and MDA productions were also analyzed. Enhanced H2O2 concentration was observed in Spd-treated seed embryo, while no significant difference of MDA level in seed embryo was observed between Spd treatment and control. However, the lower H2O2 and significantly higher MDA contents than control were detected in CHA-treated seed embryos.ConclusionsThe results suggested that Spd contributing to fast seed germination and high seed vigor of sweet corn might be closely related with the metabolism of hormones including gibberellins, ABA and ethylene, and with the increase of H2O2 in the radical produced partly from Spd oxidation. In addition, Spd might play an important role in cell membrane integrity maintaining.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0951-9) contains supplementary material, which is available to authorized users.
The present study was designed to highlight the impact of seed priming with polyethylene glycol on physiological and molecular mechanism of two cultivars of Oryza sativa L. under different levels of zinc oxide nanorods (0, 250, 500 and 750 mg L
−1). Plant growth parameters were significantly increased in seed priming with 30% PEG under nano-ZnO stress in both cultivars. Whereas, this increase was more prominent in cultivar Qian You No. 1 as compared to cultivar Zhu Liang You 06. Significant increase in photosynthetic pigment with PEG priming under stress. Antioxidant enzymes activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) as well as malondialdehyde (MDA) contents were significantly reduced with PEG priming under nano-ZnO stress. Gene expression analysis also suggested that expression of APXa, APXb, CATa, CATb, CATc, SOD1, SOD2 and SOD3 genes were down regulated with PEG priming as compared to non-primed seeds under stress. The ultrastructural analysis showed that leaf mesophyll and root cells were significantly damaged under nano-ZnO stress in both cultivars but the damage was prominent in Zhu Liang You 06. However, seed priming with PEG significantly alleviate the toxic effects of nano-ZnO stress and improved the cell structures of leaf and roots in both cultivars.Plants exposed to high concentrations of heavy metals experience changes in physiological, biochemical and molecular mechanisms of plant cells 1 . Uptake of nanoparticles (NPs) through primary roots is usually barred due to presence of suberinized exo-and endodermis. However, lateral root junctions are the primary sites through which NPs could enter the xylem via cortex and the central cylinder 2 . The higher concentrations of titanium dioxide (TiO 2 ) enhanced the alterations in mitotic activity and chromosomal aberrations, indicating genotoxic effects of nanoparticles (NPs) 3 . Nano-ZnO stress shows more detrimental effects on germination and root growth of rice as compared to TiO 2 nanoparticles 4 . Recently, Ng et al. studied the molecular downstream effects of ZnO nanoparticles on p53 signaling pathways, suggesting that ZnO nanoparticles might be sufficiently genotoxic to stimulate the DNA damage machinery and it might have caused DNA lesions because p53 was upregulated and phosphorylated with a concomitant decrease in cell cycle progression after seven days 5 . Furthermore, Giovanni et al. found that noncytotoxic zinc oxide NPs level (10 mg/L) could elevate the intracellular oxidative stress 6 . It has been observed that
Pre-harvest sprouting (PHS) is a constrain problem in hybrid rice production. The present study was conducted to investigate the inhibitory effect of eugenol on seed germination and PHS of hybrid rice variety (Qian You 1). The results showed that seed germination speed and the activities of α-amylase were inhibited by eugenol pre-soaking and these effects enhanced with the increasing of eugenol concentrations; while seedling growth was not negatively affected. In field trials, eugenol application caused a significant decline in PHS as compared with control, whereas no sustained inhibition in post-harvested seed germination was observed. The HPLC analysis indicated that eugenol raised the internal ABA content by 1–4 times more than control, and seeds treated with eugenol had relatively lower OsABA8OH2 and higher transcript levels of OsNCED2 expression during early stages of seed imbibitions. In addition, seed germinated faster after GA3 application than eugenol alone, and seed endogenous ABA content decreased obviously. It suggested that eugenol strongly delayed seed germination and the PHS in the field, which might be mainly due to the increased ABA contents caused by eugenol. However, the phenomenon of delayed germination and high ABA content caused by eugenol could be effectively recovered by exogenous GA3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.