Memristors, demonstrated by solid-state devices with continuously tunable resistance, [1][2][3][4][5][6][7] have emerged as a new paradigm for self-adaptive networks that require synapse-like functions (artificial synapse, for example). Spin-based memristors offer advantages over other types of memristors because of their significant endurance and high energy efficiency. [8,9] Yet, it remains a challenge to build dense and functional spintronic memristors with structures and materials that are compatible with existing ferromagnetic devices. [10] Here, a memristive device based upon Ta/CoFeB/MgO heterostructures is demonstrated, which are commonly used in out-of-plane magnetized magnetic tunnel junctions. [11] To achieve the memristive function, a domain wall (DW) is driven back and forth in a continuous manner in the CoFeB layer by applying in-plane positive or negative current pulses along the Ta layer, utilizing the spin-orbit torque (SOT) that the current exerts on the CoFeB magnetization. [12][13][14][15][16][17] Hence, Memristors, demonstrated by solid-state devices with continuously tunable resistance, have emerged as a new paradigm for self-adaptive networks that require synapse-like functions (artificial synapse, for example). Spin-based memristors offer advantages over other types of memristors because of their significant endurance and high energy efficiency. Yet it remains a challenge to build dense and functional spintronic memristors with structures and materials that are compatible with existing ferromagnetic devices. Here, a memristive device based upon Ta/CoFeB/MgO heterostructures is demonstrated, which are commonly used in out-of-plane magnetized magnetic tunnel junctions (MTJ). To achieve the memristive function, a domain wall (DW) is driven back and forth in a continuous manner in the CoFeB layer by applying in-plane positive or negative current pulses along the Ta layer, utilizing the spin-orbit torque (SOT) that the current exerts on the CoFeB magnetization. Hence, the magnetization and consequently the anomalous Hall effect (AHE) resistance are modulated in an analog manner, being controlled by the pulsed current characteristics including amplitude, duration, and repetition number. The quasi-continuous AHE resistance variation is explained by the SOT-induced DW creep motion. These results pave the way for developing SOT-based energy-efficient neuromorphic systems.
Information security is of great importance for the approaching Internet of things (IoT) era. Physically unclonable functions (PUFs) have been intensively studied for information security. However, silicon PUFs are vulnerable to hazards such as modeling and side-channel attacks. Here we demonstrate a magnetic analogue PUF based on perpendicularly magnetized Ta/CoFeB/MgO heterostructures. The perpendicular magnetic anisotropy originates from the CoFeB/MgO interface, which is sensitive to the subnanometer variation of MgO thickness within a certain range (0.6−1.3 nm). When the MgO layer is thinned, a thickness variation resulting from ion milling nonuniformity induces unclonable random distributions of easy-axis magnetization orientations in heterostructures. The analogue PUF can provide a much larger key size than a conventional binary-bit counterpart. Moreover, after the thinning process, the unique easy-axis magnetization orientation in each single device was formed, which can avoid setting random states to realize low power consumption and high-density integration. This magnetic PUF is a promising innovative primitive for secret key generation and storage with high security in the IoT era.
Abstract-A compact tri-band planar monopole antenna suitable for 2.4/5.2/5.8 GHz WLAN and 3.5 GHz WiMAX is presented. The antenna employs a U-shaped parasitic strip and a defect ground-plane structure. By inserting a U-shaped strip as a parasitic strip into a normal monopole which operates at lower band of the WLAN, one more resonance at the higher WLAN band comes out. A defect ground-plane composed of two symmetrical L-shaped slits leads to another resonance operating at WiMAX band. The proposed antenna has a compact size of 22 × 41 × 0.8 mm 3 and offers good radiation and reflection characteristics in the above frequency bands. The measured VSWR exhibits a good agreement with the simulated one. Detailed design steps, parametric studies and experimental results for the antenna are investigated in this paper.
We have successfully fabricated Ti-based MXenes flakes, Ti3C2Tx, by chemical etching, then prepared it as an organic dispersion and finally spin-coated it on polyimide plastic substrate for terahertz wave shielding. The shielding effectivity of the 12 μm ultra-thin film can reach up to 17 dB measured by the terahertz time-domain spectra. We can attribute the excellent phenomenon to the intrinsic absorption of triple-layered Ti3C2, due to the similar double-peak type refraction curves, which have been respectively observed from the experimental samples and the simulation ones. High conductivity and strong THz absorption indicate the Ti3C2Tx MXene is the absorptive electromagnetic shielding material. Comparing with other kinds of THz shielding materials, the Ti-based MXenes might be a potential candidate for the next generation of ultra-thin and lightweight THz shielding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.