Coronavirus disease (COVID-19) is a new infectious disease associated with high mortality, and traditional Chinese medicine decoctions (TCMDs) have been widely used for the treatment of patients with COVID-19 in China; however, the impact of these decoctions on severe and critical COVID-19-related mortality has not been evaluated. Therefore, we aimed to address this gap. In this retrospective cohort study, we included inpatients diagnosed with severe/critical COVID-19 at the Tongren Hospital of Wuhan University and grouped them depending on the recipience of TCMDs (TCMD and non-TCMD groups). We conducted a propensity score-matched analysis to adjust the imbalanced variables and treatments and used logistic regression methods to explore the risk factors associated with in-hospital death. Among 282 patients with COVID-19 who were discharged or died, 186 patients (66.0%) received TCMD treatment (TCMD cohort) and 96 (34.0%) did not (non-TCMD cohort). After propensity score matching at a 1:1 ratio, 94 TCMD users were matched to 94 non-users, and there were no significant differences in baseline clinical variables between the two groups of patients. The all-cause mortality was significantly lower in the TCMD group than in the non-TCMD group, and this trend remained valid even after matching (21.3% [20/94] vs. 39.4% [37/94]). Multivariable logistic regression model showed that disease severity (odds ratio: 0.010; 95% CI: 0.003, 0.037; [Formula: see text] < 0.001) was associated with increased odds of death and that TCMD treatment significantly decreased the odds of in-hospital death (odds ratio: 0.115; 95% CI: 0.035, 0.383; [Formula: see text] < 0.001), which was related to the duration of TCMD treatment. Our findings show that TCMD treatment may reduce the mortality in patients with severe/critical COVID-19.
Human bone marrow-derived mesenchymal stromal cells (hBMSCs) have been revealed to be beneficial for the regeneration of tissues and cells in several diseases. The present study aimed to elucidate the mechanisms underlying the effect of hBMSC transplantation on neuron regeneration in a rat model of middle cerebral artery occlusion (MCAO). The hBMSCs were isolated, cultured and identified. A rat model of MCAO was induced via the modified Longa method. Neurological severity scores (NSS) were adopted for the evaluation of neuronal function in the model rats after cell transplantation. Next, the expression levels of nestin, β-III-tubulin (β-III-Tub), glial fibrillary acidic protein (GFAP), HNA and neuronal nuclear antigen (NeuN) were examined, as well as the positive expression rates of human neutrophil alloantigen (HNA), nestin, NeuN, β-III-Tub and GFAP. The NSS, as well as the mRNA and protein expression of nestin, decreased at the 1st, 2nd, 4 and 8th weeks, while the mRNA and protein expression of NeuN, β-III-Tub and GFAP increased with time. In addition, after treatment, the MCAO rats showed decreased NSS and mRNA and protein expression of nestin, but elevated mRNA and protein expression of NeuN, β-III-Tub and GFAP at the 2nd, 4 and 8th weeks, and decreased positive expression of HNA and nestin with enhanced expression of NeuN, β-III-Tub and GFAP. Therefore, the present findings demonstrated that hBMSC transplantation triggered the formation of nerve cells and enhanced neuronal function in a rat model of MCAO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.