Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well‐defined copper‐based boron imidazolate cage (BIF‐29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2. Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady‐state and time‐resolved fluorescence spectra show these Cu sites promote the separation of electron–hole pairs and electron transfer. As a result, the cage achieves solar‐driven reduction of CO2 to CO with an evolution rate of 3334 μmol g−1 h−1 and a high selectivity of 82.6 %.
Fundamental understanding of the dependence between the structure and composition on the electrochemical CO 2 reduction reaction (CO 2 RR) would guide the rational design of highly efficient and selective electrocatalysts.Amajor impediment to the deep reduction CO 2 to multi-carbon products is the complexity of carbon-carbon bond coupling. The chemically well-defined catalysts with atomically dispersed dual-metal sites are required for these CÀCc oupling involved processes.H ere,w ed eveloped ac atalyst (BIF-102NSs) that features Cl À bridged dimer copper (Cu 2 )u nits, which delivers high catalytic activity and selectivity for C 2 H 4 . Mechanistic investigation verifies that neighboring Cu monomers not only perform as regulator for varying the reaction barrier,b ut also affordd istinct reaction paths compared with isolated monomers,r esulting in greatly improved electroreduction performance for CO 2 .
The development of efficient and low-cost bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is highly desirable for electrochemical energy conversion. Herein, this study puts forward a new Co decorated N,B-codoped interconnected graphitic carbon and carbon nanotube materials (Co/NBC) synthesized by direct carbonization of a cobalt-based boron imidazolate framework. It is demonstrated that the carbonization temperature can tune the surface structure and component of the resultant materials and optimize the electrochemically active surface area to expose more accessible active sites, effectively boosting the electrocatalytic activity. As a result, the optimized Co/NBC shows superior bifunctional catalytic activity and stability toward OER and HER in 1.0 m KOH solution. Furthermore, the catalyst can serve as both the anode and cathode for water splitting to achieve a current density of 10 mA cm −2 at a cell voltage of 1.68 V. Experimental results and theoretical calculations indicate that the excellent activity of Co/NBC catalyst benefits from the synergistic effect of partial oxidation of metallic cobalt, conductive N,B-codoped graphitic carbon and carbon nanotube, and the coupled interactions among these components. This work opens a promising avenue toward the exploration of boron imidazolate frameworks as efficient heteroatom-doped catalysts for electrocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.