Ischemic stroke is a common cerebrovascular disease and recovering blood flow as early as possible is essential to reduce ischemic damage and maintain neuronal viability, but the reperfusion process usually causes additional damage to the brain tissue in the ischemic area, namely ischemia reperfusion injury. The accumulated studies have revealed that transplantation of exogenous neural stem cells (NSCs) is an ideal choice for the treatment of ischemia reperfusion injury. At present, the source and efficacy of exogenous NSCs after transplantation is still one of the key issues that need to be resolved. In this study, human umbilical cord mesenchymal stem cells (hUC-MSCs) were obtained and induced into NSCs byadding growth factor and neuregulin1β (NRG1β) was introduced during the differentiation process of NSCs. Then, the rat middle cerebral artery occlusion/reperfusion (MCAO/R) models were established, and the therapeutic effects were evaluated among groups treated by NRG1β, NSCs and NSCs pretreated with 10 nM NRG1β (NSCs-10 nM NRG1β) achieved through intra-arterial injection. Our data show that the NSCs-10 nM NRG1β group significantly improves neurobehavioral function and infarct volume after MCAO/R, as well as cerebral cortical neuron injury, ferroptosis-related indexes and mitochondrial injury. Additionally, NSCs-10 nM NRG1β intervention may function through regulating the p53/GPX4/SLC7A11 pathway, and reducing the level of ferroptosis in cells, further enhance the neuroprotective effect on injured cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.