Primordial follicle assembly in the mouse occurs during perinatal ages and largely determines the ovarian reserve that will be available to support the reproductive life span. The development of primordial follicles is controlled by a complex network of interactions between oocytes and ovarian somatic cells that remain poorly understood. In the present research, using single-cell RNA sequencing performed over a time series on murine ovaries, coupled with several bioinformatics analyses, the complete dynamic genetic programs of germ and granulosa cells from E16.5 to postnatal day (PD) 3 were reported. Along with confirming the previously reported expression of genes by germ cells and granulosa cells, our analyses identified 5 distinct cell clusters associated with germ cells and 6 with granulosa cells. Consequently, several new genes expressed at significant levels at each investigated stage were assigned. By building single-cell pseudotemporal trajectories, 3 states and 1 branch point of fate transition for the germ cells were revealed, as well as for the granulosa cells. Moreover, Gene Ontology (GO) term enrichment enabled identification of the biological process most represented in germ cells and granulosa cells or common to both cell types at each specific stage, and the interactions of germ cells and granulosa cells basing on known and novel pathway were presented. Finally, by using single-cell regulatory network inference and clustering (SCENIC) algorithm, we were able to establish a network of regulons that can be postulated as likely candidates for sustaining germ cell-specific transcription programs throughout the period of investigation. Above all, this study provides the whole transcriptome landscape of ovarian cells and unearths new insights during primordial follicle assembly in mice.
Zinc oxide nanoparticles (nZnO) have been shown to have higher toxic effects likely due to their ion-shedding ability and low solubility under neutral conditions. In order to investigate whether exposure to nZnO during embryonic development affects ovary development, 12.5 day post coitum (dpc) fetal mouse ovaries were cultured in the presence of nZnO for 6 days. We found that the nanoparticles (NPs) accumulated within the oocyte cytoplasm in a dose dependent manner, caused DNA damage and apoptosis, and result in a significant decrease in oocyte numbers. No such effects were observed when the ovaries were incubated in the presence of ZnSO4 or bulk ZnO as controls. In addition, we injected intravenously 16 mg/kg body weight nZnO in 12.5 dpc pregnant mice on two consecutive days and analyzed the ovaries of fetuses or offspring at three critical periods of oogenesis: 17.5 dpc, 3 days post-partum (dpp) and 21 dpp. Evidence of increased DNA damage in pachytene oocytes in fetal ovaries and impaired primordial follicle assembly and folliculogenesis dynamics in the ovaries of the offspring were found. Our results indicate that certain types of NPs affect pre- and post-natal oogenesis in vitro and in vivo.
Di (2-ethylhexyl) phthalate (DEHP), an estrogen-like compound that is a ubiquitous environmental contaminant, has been reported to adversely affect human and mammalian reproduction. Many studies have found that exposure to DEHP during pregnancy perturbs female germ cell meiosis and is detrimental to oogenesis. Previous studies have demonstrated that melatonin (MLT) is beneficial to reproductive endocrinology, oogenesis, and embryonic development as the ability to antioxidative and antiapoptotic. However, whether the meiotic defect of germ cells exposed to DEHP could be rescued by MLT is not clear. Here, we cultured 12.5 days post coitum (dpc) fetal mouse ovaries for 6 days, exposed them to 100 μM DEHP with or without 1 μM MLT in vitro.. The results showed that DEHP exposure induced the abnormal formation of DNA double-strand breaks (DSBs), and inhibited the repair of DSBs during meiotic recombination. In addition, we found defective oocytes were prone to undergo apoptosis. Notably, this defect could be remarkably ameliorated by the addition of MLT via a reduction of the levels of reactive oxygen species and an inhibition of apoptosis. In conclusion, our data revealed that MLT had a protective action against the meiotic deterioration of fetal oocytes induced by DEHP in the mouse in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.