Natural biomass is used for facile synthesis of carbon quantum dots (CQDs) with high fluorescence, owing to its abundance, low cost, and eco-friendliness. In this study, a bottom-up hydrothermal method was used to prepare CQDs from water hyacinth (wh) at a constant temperature of 180 °C for 12 h. The synthesized wh-CQDs had uniform size, amorphous graphite structure, high water solubility (containing multiple hydroxyl and carboxyl groups on the surface), excitation light-dependent characteristics, and high photostability. The results showed that the aqueous solution of CQDs could detect Fe3+ rapidly, sensitively, and highly selectively with a detection limit of 0.084 M in the linear range of 0–330 M, which is much lower than the detection limit of 0.77 M specified by the World Health Organization. More importantly, because the wh-CQDs were synthesized without any additives, they exhibited low toxicity to Klebsiella sp. cells even at high concentrations. Moreover, wh-CQDs emitted bright blue fluorescence in Klebsiella sp. cells, indicating its strong penetrating ability. Correspondingly, the fluorescent cell sorting results also revealed that the proportion of cell internalization reached 41.78%. In this study, wh-CQDs derived from natural biomass were used as high-performance fluorescent probes for Fe3+ detection and Klebsiella sp. imaging. This study is expected to have great significance for the application of biomass carbon spots in the field of cellular imaging and biology.
Genome sequencing was used to identify key genes for the generation of hydrogen gas through cotton stalk hydrolysate fermentation by Klebsiella sp. WL1316. Genome annotation indicated that the genome size was 5.2 Mb with GC content 57.6%. Xylose was metabolised in the pentose phosphate pathway via the conversion of xylose to xylulose in Klebsiella sp. WL1316. This strain contained diverse formatehydrogen lyases and hydrogenases with gene numbers higher than closely related species. A metabolic network involving glucose, xylose utilisation, and fermentative hydrogen production was reconstructed.Metabolic analysis of key node metabolites showed that glucose and xylose metabolism in uenced biomass synthesis and biohydrogen production. Formic acid accumulated during fermentation at 24-48 h but decreased sharply after 48 h, illustrating the splitting of formic acid to hydrogen gas during early-tomid fermentation. The Kreb's cycle was the main competitive metabolic branch of biohydrogen synthesis at 24 h of fermentation. Lactic and acetic acid fermentation and late ethanol accumulation competed the carbon skeleton of biohydrogen synthesis after 72 h of fermentation, indicating that these competitive pathways are regulated in middle-to-late fermentation (48-96 h). This study is the rst to elucidate the metabolic mechanisms of mixed sugar utilisation and biohydrogen synthesis based on genomic information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.