Of the >20 epithelial keratins, keratin 20 (K20) has an unusual distribution and is poorly studied. We began to address K20 function, by expressing human wild-type and Arg80-->His (R80H) genomic (18 kb) and cDNA K20 in cells and mice. Arg80 of K20 is conserved in most keratins, and its mutation in epidermal keratins causes several skin diseases. R80H but not wild-type K20 generates disrupted keratin filaments in transfected cells. Transgenic mice that overexpress K20 R80H have collapsed filaments in small intestinal villus regions, when expressed at moderate levels, whereas wild-type K20-overexpressing mice have normal keratin networks. Overexpressed K20 maintains its normal distribution in several tissues, but not in the pancreas and stomach, without causing any tissue abnormalities. Hence, K20 pancreatic and gastric expression is regulated outside the 18-kb region. Cross-breeding of wild-type or R80H K20 mice with mice that overexpress wild-type K18 or K18 that is mutated at the conserved K20 Arg80-equivalent residue show that K20 plays an additive and compensatory role with K18 in maintaining keratin filament organization in the intestine. Our data suggest the presence of unique regulatory domains for pancreatic and gastric K20 expression and support a significant role for K20 in maintaining keratin filaments in intestinal epithelia.
BACKGROUND & AIMS Keratins 8 and 18 (K8/K18) provide anti-apoptotic functions upon liver injury. The cytoprotective function of keratins explains the over-representation of K8/K18 variants in patients with cirrhosis. However, K8/K18 variant-associated susceptibility to acute liver injury, which is well-described in animal models, has not been studied in humans. METHODS We analyzed the entire coding regions of the KRT8 and KRT18 genes (15 total exons and their exon-intron boundaries) to determine the frequency of K8/K18 variants in 344 acute liver failure (ALF) patients (49% acetaminophen-related) and two control groups [African-Americans (245 subjects) and previously-analyzed Caucasians (727 subjects)]. RESULTS There were 45 ALF patients with significant amino-acid-altering K8/K18 variants including 23 with K8 R341H and 11 with K8 G434S. K8 variants were significantly more common (total of 42 patients) than K18 variants (3 patients) (p<0.001). We found an increased frequency of variants in Caucasian ALF patients (9.1%) versus controls (3.7%) (p=0.01). K8 R341H was more common in Caucasian (p=0.01) and G434S was more common in African-American (p=0.02) ALF patients versus controls. Furthermore, Caucasians with K8/K18 variants were less likely to survive ALF without transplantation (p=0.02). K8 A333A and G434S variants associated exclusively with African-Americans (23% combined frequency in African-American but none in Caucasian controls; p<0.0001), while overall K18 variants were more common in non-Caucasian liver disease subjects compared to Caucasians (2.8% versus 0.6%, respectively, p=0.008). CONCLUSIONS KRT8 and KRT18 are important susceptibility genes for ALF development. The presence of K8/K18 variants predisposes to an adverse ALF outcome, and some variants segregate with unique ethnic/race backgrounds.
Epithelial cell keratins make up the type I (K9-K20) and type II (K1-K8) intermediate filament proteins. In glandular epithelia, K8 becomes phosphorylated on S73 ((71)LLpSPL) in human cultured cells and tissues during stress, apoptosis, and mitosis. Of all known proteins, the context of the K8 S73 motif (LLS/TPL) is unique to type II keratins and is conserved in epidermal K5/K6, esophageal K4, and type II hair keratins, except that serine is replaced by threonine. Because knowledge regarding epidermal and esophageal keratin regulation is limited, we tested whether K4-K6 are phosphorylated on the LLTPL motif. K5 and K6 become phosphorylated in vitro on threonine by the stress-activated kinase p38. Site-specific anti-phosphokeratin antibodies to LLpTPL were generated, which demonstrated negligible basal K4-K6 phosphorylation. In contrast, treatment of primary keratinocytes and other cultured cells, and ex vivo skin and esophagus cultures, with serine/threonine phosphatase inhibitors causes a dramatic increase in K4-K6 LLpTPL phosphorylation. This phosphorylation is accompanied by keratin solubilization, filament reorganization, and collapse. K5/K6 LLTPL phosphorylation occurs in vivo during mitosis and apoptosis induced by UV light or anisomycin, and in human psoriatic skin and squamous cell carcinoma. In conclusion, type II keratins of proliferating epithelia undergo phosphorylation at a unique and conserved motif as part of physiological mitotic and stress-related signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.