Disagreements about the mechanisms of cement hydration remain despite the fact that portland cement has been studied extensively for over 100 years. One reason for this is that direct observation of the change in microstructure and chemistry are challenging for many experimental techniques. This paper presents results from synchrotron nano X-ray tomography and fluorescence imaging. The data show unprecedented direct observations of small collections of C3S particles before and after different periods of hydration in 15 mmol/L lime solution. X-ray absorption contrast is used to make three dimensional maps of the changes of these materials with time. The chemical compositions of hydration products are then identified with X-ray fluorescence mapping and scanning electron microscopy. These experiments are used to provide insight into the rate and morphology of the microstructure formation.
The pore characteristics, mineral compositions, physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan, X-ray diffraction and physical tests. A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed. The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform. The failure processes of the porous rock media loaded by the split Hopkinson pressure bar (SHPB) were simulated by satisfying the elastic wave propagation theory. The dynamic responses, stress transition, deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed. It is shown that an explicit and quantitative analysis of the stress, strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models. With applied wave stresses of certain amplitude and velocity, no evident pore deformation was observed for the rock media with a porosity less than 15%. The deformation is dominantly the combination of microplasticity (shear strain), cracking (tensile strain) of matrix and coalescence of the cracked regions around pores. Shear stresses lead to microplasticity, while tensile stresses result in cracking of the matrix. Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values. The simulation results of stress wave propagation, deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests. The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response, stress transit mode, deformation and failure mechanisms and the disaster mechanisms of rock media. porous media, three-dimensional finite element model, rock media, stress wave, failure mechanism, energy dissipation Citation: JU Y, Wang H J, Yang Y M, et al. Numerical simulation of mechanisms of deformation, failure and energy dissipation in porous rock media subjected to wave stresses.
The reasons for the start and end of the induction period of cement hydration remain topic of controversy. One long-standing hypothesis is that a thin metastable hydrate forming on the surface of cement grains significantly reduces the particle dissolution rate; the eventual disappearance of this layer re-establishes higher dissolution rates at the beginning of the acceleration period. However, the importance, or even the existence, of this metastable layer has been questioned because it cannot be directly detected in most experiments. In this work, a combined analysis using nano-tomography and nano-X-ray fluorescence makes the direct imaging of early hydration products possible. These novel X-ray imaging techniques provide quantitative measurements of 3D structure, chemical composition, and mass density of the hydration products during the induction period. This work does not observe a low density product on the surface of the particle, but does provide insights into the formation of etch pits and the subsequent hydration products that fill them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.