This study aimed to develop and optimize a novel biochar-based fertilizer composed of rice husk biochar and urea–hydrogen peroxide (UHP), which can simultaneously slowly release nitrogen and immobilize cadmium (Cd). Response surface methodology (RSM) was adopted to optimize the fertilizer formulation with the lowest nitrogen release rate. Under the optimized conditions, the cumulative nitrogen release rate of the biochar-based fertilizer was 17.63%, which was significantly lower than that of ordinary fertilizer. Elementary analysis, scanning electron microscopy (SEM) images, and Fourier transform infrared (FTIR) spectroscopy proved that UHP attached to the porous structures of the biochar. The adsorption test showed that the adsorption of Cd onto biochar-based fertilizer quickly reached equilibrium with an equilibrium adsorbing quantity (Qe) of 6.3279 mg·g−1 with an initial concentration of 10 mg·L−1. Compared to original biochar, the Cd immobilization ability of biochar-based fertilizer was significantly better. The adsorption of Cd on biochar-based fertilizer is mainly based on a monolayer adsorption behavior. Finally, improved crop growth was demonstrated by pot experiments, which showed a significant increase in the biomass of cabbage. The concept and findings presented in this study may be used as references in developing a novel biochar-based fertilizer for simultaneously enhancing crop yield and reducing environmental risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.