Elucidation of individual Notch protein biology in specific cancer is crucial to develop safe, effective, and tumor-selective Notch-targeting therapeutic reagents for clinical use [1]. Here, we explored the Notch4 function in triple-negative breast cancer (TNBC). We found that silencing Notch4 enhanced tumorigenic ability in TNBC cells via upregulating Nanog expression, a pluripotency factor of embryonic stem cells. Intriguingly, silencing Notch4 in TNBC cells suppressed metastasis via downregulating Cdc42 expression, a key molecular for cell polarity formation. Notably, downregulation of Cdc42 expression affected Vimentin distribution, but not Vimentin expression to inhibit EMT shift. Collectively, our results show that silencing Notch4 enhances tumorigenesis and inhibits metastasis in TNBC, indicating that targeting Notch4 may not be a potential strategy for drug discovery in TNBC.
Aberrant patterns of 5-methylcytosine (m5C)-based ribonucleic acid (RNA) methylation have critical roles in various human diseases, but their importance in spinal cord injury (SCI) is largely unknown. We explore the expression patterns and potential roles of m5C-based regulators of RNA modification after SCI. We analyzed 16 m5C-based regulators of RNA modification in tissues with SCI and normal rats from the Gene Expression Omnibus database. We constructed a “gene signature” of m5C-based regulators of RNA modification to predict the prognosis of SCI using least absolute shrinkage and selection operator regression and random-forest strategy. We found that the m5C-related genes, deoxyribonucleic acid (DNA) methyltransferase1 (Dnmt1), methyl-CpG binding domain protein 2 (Mbd2), ubiquitin-like with PHD and ring finger domains 1 (Uhrf1), uracil-N-glycosylase (Ung), and zinc finger and BTB(brica-brac, tramtrack, and broad) domain containing 38 (Zbtb38) had high expression, and zinc finger and BTB domain containing 4 (Zbtb4) had low expression in SCI. Analysis of the correlation between the gene sets of m5C-based regulators of RNA modification and immune-cell infiltration and immune response revealed Dnmt1, DNA methyltransferases 3A (Dnmt3a), Mbd2, and Ung to be positive regulators of the immune microenvironment, and Zbtb4 may negatively regulate the immune environment. Then, two molecular subtypes were identified based on 16 m5C-regulated genes. Functional-enrichment analysis of differentially expressed genes between different patterns of m5C-based modification was undertaken. Through the creation of a protein–protein interaction network, we screened 11 hub genes. We demonstrated their importance between SCI group and sham group using real-time reverse transcription-quantitative polymerase chain reaction in rat model. Expression of hub genes did not correlate with mitophagy but was positively correlated with endoplasmic reticulum stress (ERS), which suggested that there may be differences in ERS between different patterns of m5C-based modification. This present study explored and discovered the close link between m5C regulators-related genes and SCI. We also hope our findings may contribute to further mechanistic and therapeutic research on the role of key m5C regulators after SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.