The dissemination, seeding, and colonization of circulating tumor cells (CTCs) serve as the root of distant metastasis. As a key step in the early stage of metastasis formation, colonization of CTCs in the (pre-)metastatic niche appears to be a valuable target. Evidence showed that inflammatory neutrophils possess both a CTC- and niche-targeting property by the intrinsic cell adhesion molecules on neutrophils. Inspired by this mechanism, we developed a nanosize neutrophil-mimicking drug delivery system (NM-NP) by coating neutrophils membranes on the surface of poly(latic-co-glycolic acid) nanoparticles (NPs). The membrane-associated protein cocktails on neutrophils membrane were mostly translocated to the surface of NM-NP via a nondisruptive approach, and the biobinding activity of neutrophils was highly preserved. Compared with uncoated NP, NM-NP exhibited enhanced cellular association in 4T1 cell models under shear flow in vitro, much higher CTC-capture efficiency in vivo, and improved homing to the premetastatic niche. Following loading with carfilzomib, a second generation of proteasome inhibitor, the NM-NP-based nanoformulation (NM-NP-CFZ) selectively depleted CTCs in the blood, prevented early metastasis and potentially inhibited the progress of already-formed metastasis. Our NP design can neutralize CTCs in the circulation and inhibit the formation of a metastatic niche.
Heat stroke (HS) is a fatal disease caused by thermal damage in the body, and it has a very high mortality rate. In 2015, the People's Liberation Army Professional Committee of Critical Care Medicine published the first expert consensus on HS in China, Expert consensus on standardized diagnosis and treatment for heat stroke. With an increased understanding of HS and new issues that emerged during the HS treatment in China in recent years, the 2015 consensus no longer meet the requirements for HS prevention and treatment. It is necessary to update the consensus to include the latest research evidence and establish a new consensus that has broader coverage, is more practical and is more in line with China's national conditions. This new expert consensus includes new concept of HS, recommendations for laboratory tests and auxiliary examinations, new understanding of diagnosis and differential diagnosis, On-site emergency treatment and In-hospital treatment, translocation of HS patients and prevention of HS.
Amyloid-beta (Aβ) accumulation in the brain is believed to play a central role in Alzheimer's disease (AD) pathogenesis, and the common late-onset form of AD is characterized by an overall impairment in Aβ clearance. Therefore, development of nanomedicine that can facilitate Aβ clearance represents a promising strategy for AD intervention. However, previous work of this kind was concentrated at the molecular level, and the disease-modifying effectiveness of such nanomedicine has not been investigated in clinically relevant biological systems. Here, we hypothesized that a biologically inspired nanostructure, apolipoprotein E3-reconstituted high density lipoprotein (ApoE3-rHDL), which presents high binding affinity to Aβ, might serve as a novel nanomedicine for disease modification in AD by accelerating Aβ clearance. Surface plasmon resonance, transmission electron microscopy, and co-immunoprecipitation analysis showed that ApoE3-rHDL demonstrated high binding affinity to both Aβ monomer and oligomer. It also accelerated the microglial, astroglial, and liver cell degradation of Aβ by facilitating the lysosomal transport. One hour after intravenous administration, about 0.4% ID/g of ApoE3-rHDL gained access to the brain. Four-week daily treatment with ApoE3-rHDL decreased Aβ deposition, attenuated microgliosis, ameliorated neurologic changes, and rescued memory deficits in an AD animal model. The findings here provided the direct evidence of a biomimetic nanostructure crossing the blood-brain barrier, capturing Aβ and facilitating its degradation by glial cells, indicating that ApoE3-rHDL might serve as a novel nanomedicine for disease modification in AD by accelerating Aβ clearance, which also justified the concept that nanostructures with Aβ-binding affinity might provide a novel nanoplatform for AD therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.