Amygdalin, a naturally occurring substance, has been suggested to be efficacious as an anticancer substance. The effect of amygdalin on cervical cancer cells has never been studied. In this study, we found that the viability of human cervical cancer HeLa cell line was significantly inhibited by amygdalin. 4,6-Diamino-2-phenyl indole (DAPI) staining showed that amygdalin-treated HeLa cells developed typical apoptotic changes. The development of apoptosis in the amygdalin-treated HeLa cells were confirmed by double staining of amygdalin-treated HeLa cells with annexin V-FITC and propidium iodide (PI) along with increase in caspase-3 activity in these cells. Further studies indicated that antiapoptotic protein Bcl-2 was downregulated whereas proapoptotic Bax protein was upregulated in the amygdalin-treated HeLa cells implying involvement of the intrinsic pathway of apoptosis. In vivo, amygdalin administration inhibited the growth of HeLa cell xenografts through a mechanism of apoptosis. The results in the present study suggest that amygdalin may offer a new therapeutic option for patients with cervical cancer.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is essential for maintaining normal function of the adult heart and is known to play an important role in myocardial remodeling. In the present study, we observed that heart-specific HB-EGF transgenic (TG) mice had systolic dysfunction with decreased fractional shortening (FS%), increased end-systolic diameter (LVIDs) at 5 months of age, increased heart fibrosis, and increased mRNA expression of Col1α1 and Col3α1 at 1, 3, 5 and 7 months of age compared to nontransgenic (NTG) littermates. However, the left ventricular anterior wall thickness at end-systole (LVAWs) of the TG mice was not different than the NTG mice. Phosphorylation levels of Akt, mTor and p70s6k were increased due to HB-EGF expression in TG mice compared with the NTG mice at 3 and 7 months of age. Additionally, activated Akt, mTor and p70s6k were co-localized with vimentin to cardiac fibroblasts isolated from TG mice. Furthermore, HB-EGF significantly increased phosphorylation levels of Akt, mTor and p70s6k and increased expression of type I collagen in cultured primary cardiac fibroblasts. Rapamycin (Rapa) and CRM197, inhibitors of mTor and HB-EGF respectively, could inhibit the expression of type I collagen in the cultured primary cardiac fibroblasts and Rapa suppressed interstitial fibrosis of the heart tissues in vivo. In addition, a BrdU assay showed that HB-EGF increased proliferation of cardiac fibroblasts by 30% compared with cells without HB-EGF treatment. HB-EGF-induced proliferation was completely diminished in the presence of Rapa. These results suggest that HB-EGF induced heart fibrosis and proliferation of cardiac fibroblasts occurs through activation of the Akt/mTor/p70s6k pathway.
Here we identify a novel protein, named Parcs for pro-apoptotic protein required for cell survival, that is involved in both cell cycle progression and apoptosis. Parcs interacted with Apaf-1 by binding to the oligomerization domain of Apaf-1. Apaf-1-mediated activation of caspase-9 and caspase-3 was markedly decreased in a cytosolic fraction isolated from HeLa cells with reduced parcs expression. Interestingly, parcs deficiency blocked cell proliferation in non-tumorigenic cells but not in multiple tumor cell lines. In MCF-10A cells, parcs deficiency led to early G 1 arrest. Conditional inactivation of parcs in genetically modified primary mouse embryonic fibroblasts using the Cre-LoxP system also resulted in the inhibition of cell proliferation. We conclude that Parcs may define a molecular checkpoint in the control of cell proliferation for normal cells that is lost in tumor cells.
This study aims to evaluate the relationship between home parenting environment and the cognitive and psychomotor development in children under 5 years old by using meta-analysis. A systematic search of the Chinese and English databases including Pubmed, Embase, the Cochrane Library, CNKI, Weipu, Wanfang, and CBMdisc databases from January 1, 1990, to July 31, 2021, was performed. Articles concerning the relationship between home parenting environment and the cognitive and psychomotor development in children under 5 years old were included. Review Manager 5.4 was used for meta-analysis. Subgroup analysis in terms of age and region were performed. A total of 12 articles were included, including 11 in English and 1 in Chinese. Meta-analysis showed that there was significant relationship between home parenting environment and the cognitive and psychomotor development of children (r = 0.31; r = 0.21). Subgroup analysis showed that correlation between home parenting environment and the cognitive and psychomotor development of children was stronger in children over 18 months compared to those under 17 months [(r = 0.33, r = 0.21) vs. (r = 0.28, r = 0.17)]. The converted summary r value between home parenting environment and cognitive development in developing and developed countries was both 0.32. Conclusively, there is a positive correlation between the home parenting environment and the cognitive and psychomotor development of children under 5 years old. Improving the home parenting environment of children is beneficial to promote their early development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.