In addition to DNA cytosine methylation (5-methyl-2′-deoxycytidine, m5dC), DNA adenine methylation (N6-methyl-2′-deoxyadenosine, m6dA) is another DNA modification that has been discovered in eukaryotes. Recent studies demonstrated that the content and distribution of m6dA in genomic DNA of vertebrates and mammals exhibit dynamic regulation, indicating m6dA may function as a potential epigenetic mark in DNA of eukaryotes besides m5dC. Whether m6dA undergoes the further oxidation in a similar way to m5dC remains elusive. Here, we reported the existence of a new DNA modification, N6-hydroxymethyl-2′-deoxyadenosine (hm6dA), in genomic DNA of mammalian cells and tissues. We found that hm6dA can be formed from the hydroxylation of m6dA by the Fe2+- and 2-oxoglutarate-dependent ALKBH1 protein in genomic DNA of mammals. In addition, the content of hm6dA exhibited significant increase in lung carcinoma tissues. The increased expression of ALKBH1 in lung carcinoma tissues may contribute to the increase of hm6dA in DNA. Taken together, our study reported the existence and formation of hm6dA in genomic DNA of mammals.
2-hydroxyglutarate (2HG) is a potent competitor of α-ketoglutarate (α-KG) and can inhibit multiple α-KG dependent dioxygenases that function on the epigenetic modifications. The accumulation of 2HG contributes to elevated risk of malignant tumors. 2HG carries an asymmetric carbon atom in its carbon backbone and differentiation between D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG) is crucially important for accurate diagnosis of 2HG related diseases. Here we developed a strategy by chiral derivatization combined with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis for highly sensitive determination of D-2HG and L-2HG enantiomers. N-(p-toluenesulfonyl)-L-phenylalanyl chloride (TSPC) was used to derivatize 2HG. The formed diastereomers by TSPC labeling can efficiently improve the chromatographic separation of D-2HG and L-2HG. And derivatization by TSPC could also markedly increase the detection sensitivities by 291 and 346 folds for D-2HG and L-2HG, respectively. Using the developed method, we measured the contents of D-2HG and L-2HG in clear cell renal cell carcinoma (ccRCC) tissues. We observed 12.9 and 29.8 folds increase of D-2HG and L-2HG, respectively, in human ccRCC tissues compared to adjacent normal tissues. The developed chiral derivatization combined with LC-ESI-MS/MS analysis offers sensitive determination of D-2HG and L-2HG enantiomers, which benefits the precise diagnosis of 2HG related metabolic diseases.
The discovery of dynamic and reversible modifications in messenger RNA is opening new directions in RNA modification-mediated regulation of biological processes.
Toxic heavy metals have been considered to be harmful environmental contaminations. The molecular mechanisms of heavy-metals-induced cytotoxicity and carcinogenicity are still not well elucidated. Previous reports showed exposures to toxic heavy metals can cause a change of DNA cytosine methylation (5-methylcytosine, 5-mC). However, it is still not clear whether heavy metals have effects on the recently identified new epigenetic marks in both DNA and RNA, i.e., 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and 5-carboxylcytosine (5-caC). Here, we established a chemical labeling strategy in combination with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) analysis for highly sensitive detection of eight modified cytidines in DNA and RNA. The developed method allowed simultaneous detection of all eight modified cytidines with improved detection sensitivities of 128-443-fold. Using this method, we demonstrated that the levels of 5-hmC, 5-foC, and 5-caC significantly decreased in both the DNA and RNA of mouse embryonic stem (ES) cells while exposed to arsenic (As), cadmium (Cd), chromium (Cr), and antimony (Sb). In addition, we found that treatments by heavy metals induced a decrease of the activities of 10-11 translocation (Tet) proteins. Furthermore, we revealed that a content change of metabolites occurring in the tricarboxylic acid cycle may be responsible for the decline of the derivatives of 5-mC. Our study shed light on the epigenetic effects of heavy metals, especially for the induced decline of the derivatives of 5-mC in both DNA and RNA.
5-Methylcytosine (5-mC) is an important epigenetic mark that plays critical roles in a variety of cellular processes. To properly exert physiological functions, the distribution of 5-mC needs to be tightly controlled in both DNA and RNA. In addition to methyltransferase-mediated DNA and RNA methylation, premethylated nucleotides can be potentially incorporated into DNA and RNA during replication and transcription. To exclude the premodified nucleotides into DNA and RNA, endogenous 5-methyl-2'-deoxycytidine monophosphate (5-Me-dCMP) generated from nucleic acids metabolism can be enzymatically deaminated to thymidine monophosphate (TMP). Therefore, previous studies failed to detect 5-Me-dCMP or 5-methylcytidine monophosphate (5-Me-CMP) in cells. In the current study, we established a method by chemical labeling coupled with liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS/MS) for sensitive and simultaneous determination of 10 nucleotides, including 5-Me-dCMP and 5-Me-CMP. As N,N-dimethyl-p-phenylenediamine (DMPA) was utilized for labeling, the detection sensitivities of nucleotides increased by 88-372-fold due to the introduction of a tertiary amino group and a hydrophobic moiety from DMPA. Using this method, we found that endogenous 5-Me-dCMP and 5-Me-CMP widely existed in cultured human cells, human tissues, and human urinary samples. The presence of endogenous 5-Me-dCMP and 5-Me-CMP indicates that deaminases may not fully deaminate these methylated nucleotides. Consequently, the remaining premethylated nucleosides could be converted to nucleoside triphosphates as building blocks for DNA and RNA synthesis. Furthermore, we found that the contents of 5-Me-dCMP and 5-Me-CMP exhibited significant decreases in renal carcinoma tissues and urine samples of lymphoma patients compared to their controls, probably due to more reutilization of methylated nucleotides in DNA and RNA synthesis. This study is, to the best of our knowledge, the first report for detecting endogenous 5-Me-dCMP and 5-Me-CMP in mammals. The detectable endogenous methylated nucleotides indicate the potential deleterious effects of premodified nucleotides on aberrant gene regulation in cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.